Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 429 Accesses

Abstract

Contrary to the wide ranging nature of d- and f-block chemistry, that of the s- and p-block elements has classically been accepted as limited to one or two stable oxidation states outside of the elemental species, thus curtailing the broader reactivity of compounds involving these elements. However, the past two decades have seen tremendous growth in the area of low-oxidation state and low-coordinate main-group (MG) chemistry, resulting in an expansion of readily available oxidation states for MG elements. This has led to a range of reactivities of such MG complexes which often see comparison with those of the transition-metals. This chapter aims to give an introduction to a number of concepts which are key to this contemporary MG chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Power PP (2010) Main-group elements as transition metals. Nature 463:171

    Google Scholar 

  2. Parkin G (2006) Valence, oxidation number, and formal charge: Three related but fundamentally different concepts. J Chem Educ 83:791

    Google Scholar 

  3. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1933) Advanced inorganic chemistry, 6th ed. Wiley, Chichester, United Kingdom

    Google Scholar 

  4. Sidgwick NV (1933) Ann Rep 20:120

    Google Scholar 

  5. Pyykkö P (1988) Relativistic effects in structural chemistry.  Chem Rev 88:563

    Google Scholar 

  6. Goubeau J (1957) Mehrfachbindungen in der anorganischen chemie. Angew Chem 69:77

    Google Scholar 

  7. Jutzi P (1975) New element-carbon (p-p)π bonds. Angew Chem Int Ed 14:232

    Google Scholar 

  8. Mulliken RS (1950) Overlap integrals and chemical binding. J Am Chem Soc 72:4493

    Google Scholar 

  9. Goldberg DE, Harris DH, Lappert MF, Thom KM (1976) A new synthesis of divalent group 4B alkyls M[CH(SiMe3)2]2(M = Ge or Sn), and the crystal and molecular strcuture of the tin compound. JCS Chem Comm 120:261

    Google Scholar 

  10. West R, Fink MJ, Michl J (1981) Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214:1343

    Google Scholar 

  11. Yoshifuji M, Shima I, Inamoto N (1981) Synthesis and structure of bis(2,4,6-tri-tert-butylphenyl)diphosphene: isolation of a true phosphobenzene. J Am Chem Soc 103:4587

    Google Scholar 

  12. Trinquier G (1990) Double bonds and bridged structures in the heavier analogs of ethylene. J Am Chem Soc 112:2130

    Google Scholar 

  13. Shepherd BD, Powell DR, West R (1989) Synthesis, geometrical isomerism, and crystal structure of a highly hindered disilene. Organometallics 8:2664

    Google Scholar 

  14. Kira M, Maruyama D, Kabuto C, Ebata K, Sakurai H (1994) Stable tetrakis(trialkylsilyl)disilenes; synthesis, X-ray structures, and UV/VIS spectra. Angew Chem Int Ed 33:1489

    Google Scholar 

  15. Kobayashi M, Hayakawa N, Nakabayashi K, Matsuo T, Hashizume D, Fueno H, Tanaka K, Tamao K (2014) Highly coplanar (E)-1,2-Di(1-naphthyl)disilene Involving a distinct CH–π interaction with the perpendicularly oriented protecting eind group. Chem Lett 4:432

    Google Scholar 

  16. Fischer RC, Power PP (2010) π-bonding and the lone pair effect in multiple bonds involving heavier main group elements: Developments in the new millennium. Chem Rev 110:3877

    Google Scholar 

  17. Davidson PJ, Harris DH, Lappert MF (1976) Subvalent Group 4B metal alkyls and amides. Part I. The synthesis and physical properties of kinetically stable bis[bis(trimethysilyl)methyl]-germanium(II), -tin(II), and -lead(II). JCS Dalton 6:2268

    Google Scholar 

  18. Fjeldberg T, Schilling BER, Thorne AJ, Haaland A, Lappert MF (1986) Subvalent Group 4B metal alkyls and amides. Part 8. Germanium and tin carbene analogues MR2[M = Ge or Sn, R = CH(SiMe3)2]: syntheses and structures in the gas phase (electron diffraction); molecular-orbital calculations for MH2 and GeMe2. J Chem Soc Dalton Trans 5:1551

    Google Scholar 

  19. Hitchcock PB, Jasim HA, Lappert MF, Leung W, Rai AW, Taylor RE (1991) Subvalent group 14 metal compounds-XIII. Oxidative addition reactions of germanium and tin amides M(NR2)2 (R = SiMe3, M = Ge OR Sn) with sulphur, selenium, tellurium or MeOOCC=CCOOMe; X-ray structures of [Ge(NR2)2(μ-Te)]2 and Polyhedron 10:1203

    Google Scholar 

  20. Cotton JD, Davidson PJ, Lappert MF (1976) Subvalent Group 4B metal alkyls and amides. Part II. The chemistry and properties of bis[bis(trimethylsilyl)methyl]tin(II) and its lead analogue. J Chem Soc Dalton Trans 6:2275

    Google Scholar 

  21. Nagase S, Kobayashi K, Takagi N (2000) Triple bonds between heavier Group 14 elements. A theoretical approach. J Organometall Chem 611:264

    Google Scholar 

  22. Colegrove BT, Schaefer HF III (1990) Disilyne (Si2H2) revisited. J Phys Chem 94:5593

    Google Scholar 

  23. Höhn MM, Amos RD, Kobayashi R, Handy NC (1993) Structure and properties of disilyne. J Chem Phys 98:7107

    Google Scholar 

  24. Takagi N, Nagase S (2001) Substituent effects on germanium−germanium and tin−tin triple bonds. Organometallics 20:5498

    Google Scholar 

  25. Chen Y, Hartmann M, Diedenhofen M, Frenking G (2001) Turning a transition state into a minimum—the nature of the bonding in diplumbylene compounds RPbPbR (R=H, Ar). Angew Chem Int Ed 40:2052

    Google Scholar 

  26. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, vol. IV, Van Nostrand–Rheinhold, New York

    Google Scholar 

  27. Pu L, Twamley B, Power PP (2000) Synthesis and characterization of 2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3):  A Stable heavier group 14 element analogue of an alkyne. J Am Chem Soc 122:3524

    Google Scholar 

  28. Jung Y, Brynda M, Power PP, Head-Gordon M (2006) Ab initio quantum chemistry calculations on the electronic structure of heavier alkyne congeners:  Diradical character and reactivity. J Am Chem Soc 128:7185

    Google Scholar 

  29. Kipping FS, Sands JE (1921) XCIII.—Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8. J Chem Soc Trans, 830

    Google Scholar 

  30. Erlich P (1907) Lancet 173:351

    Google Scholar 

  31. Kohler H, Michaelis A (1877) Ueber phenylphosphin und phosphobenzol (diphosphenyl). Ber Dtsch Chem Ges 10:807

    Google Scholar 

  32. Cowley AH (1984) Double bonding between the heavier main-group elements: From reactive intermediates to isolable molecules. Polyhedron 3:389

    Google Scholar 

  33. Li J, Stasch A, Schenk C, Jones C (2011) Extremely bulky amido-group 14 elementchloride complexes: Potential synthons for low oxidation state main group chemistry. Dalton Trans 40:10448

    Google Scholar 

  34. Pu L, Olmstead MM, Power PP (1998) Synthesis and characterization of the monomeric terphenyl−metal halides Ge(Cl){C6H3-2,6-Trip2} (Trip = C6H2-2,4,6-i-Pr3) and Sn(I){C6H3-2,6-Trip2} and the terphenyl−metal amide Sn{N(SiMe3)2}{C6H3-2,6-Trip2}. Organometallics 17:5602

    Google Scholar 

  35. Su J, Li XW, Crittendon RC, Robinson GH (1997) How short is a -Ga⋮Ga- triple bond? synthesis and molecular structure of Na2[Mes*2C6H3-Ga⋮Ga-C6H3Mes*2] (Mes* = 2,4,6-i-Pr3C6H2):  The first gallyne. J Am Chem Soc 119:5471

    Google Scholar 

  36. Pu L, Senge MO, Olmstead MM, Power PP (1998) Synthesis and characterization of Na2{Ge(C6H3-2,6-Trip2)}2 and K2{Sn(C6H3-2,6-Trip2)}2(Trip = -C6H2-2,4,6-i-Pr3):  A new class of multiply bonded main group compounds. J Am Chem Soc 120:12682

    Google Scholar 

  37. Ghadwal RS, Roesky HW, Merkel S, Henn J, Stalke D (2009) Lewis base stabilized dichlorosilylene. Angew Chem 121:5793

    Google Scholar 

  38. Ghadwal RS, Azhakar R, Roesky HW (2013) Dichlorosilylene: A high temperature transient species to an indispensable building block. Acc Chem Res 46:444

    Google Scholar 

  39. Inoue S, Eisenhut C (2013) A dihydrodisilene transition metal complex from an N-heterocyclic carbene-stabilized silylene monohydride. J Am Chem Soc 135:18315

    Google Scholar 

  40. Sindlinger CP, Wesemann L (2014) Hydrogen abstraction from organotin di- and trihydrides by N-heterocyclic carbenes: a new method for the preparation of NHC adducts to tin(II) species and observation of an isomer of a hexastannabenzene derivative [R6Sn6]. Chem Sci 5:2739

    Google Scholar 

  41. Green SP, Jones C, Stasch A (2007) Stable magnesium(I) compounds with Mg-Mg bonds. Science 318:1754

    Google Scholar 

  42. Bonyhady SJ, Jones C, Nembenna S, Stasch A, Edwards AJ, McIntyre GJ (2010) β-diketiminate-stabilized Magnesium(I) dimers and Magnesium(II) hydride complexes: Synthesis, characterization, adduct formation, and reactivity studies. Chem Eur J 16:938

    Google Scholar 

  43. Stasch A, Jones C (2011) Stable dimeric magnesium(I) compounds: from chemical landmarks to versatile reagents. Dalton Trans 40:5659

    Google Scholar 

  44. Lalrempuia R, Stasch A, Jones C (2013) The reductive disproportionation of CO2 using a magnesium(I) complex: analogies with low valent f-block chemistry. Chem Sci 4:4383

    Google Scholar 

  45. Fohlmeister L, Liu S, Schulten C, Moubaraki B, Stasch A, Cashion JD, Murray KS, Gagliardi L, Jones C (2012) Low-coordinate Iron(I) and Manganese(I) dimers: Kinetic stabilization of an exceptionally short Fe-Fe multiple bond. Angew Chem Int Ed 51:8294

    Google Scholar 

  46. Li J, Schenk C, Goedecke C, Frenking G, Jones C (2011) A digermyne with a Ge–Ge single bond that activates dihydrogen in the solid state. J Am Chem Soc 133:18622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrance John Hadlington .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadlington, T.J. (2017). General Introduction. In: On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-51807-7_1

Download citation

Publish with us

Policies and ethics