Skip to main content

Abstract

Time stretch is the leading technology in ultrafast big-data acquisition. Here we introduce time stretch technique and highlight its applications in the context of imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solli, D. R., Ropers, C., Koonath, P., & Jalali, B. (2007). Optical rogue waves. Nature, 450(7172), 1054–1057.

    Article  Google Scholar 

  2. Ng, W., Rockwood, T., & Reamon, A. (2014). Demonstration of channel-stitched photonic time stretch analog-to-digital converter with enob > 8 for a 10 ghz signal bandwidth. In GOMACTech (p. 26.2). Washington, DC: US Department of Defense.

    Google Scholar 

  3. Goda, K., & Jalali, B. (2013). Dispersive fourier transformation for fast continuous single-shot measurements. Nature Photonics, 7(2), 102–112.

    Article  Google Scholar 

  4. Goda, K., Tsia, K. K., & Jalali, B. (2009). Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242), 1145–1149.

    Article  Google Scholar 

  5. Mahjoubfar, A., Goda, K., Wang, C., Fard, A., Adam, J., Gossett, D. R., Ayazi, A., Sollier, E., Malik, O., Chen, E., et al. (2013). 3d ultrafast laser scanner. In SPIE LASE (pp. 86110N–86110N). Washington, DC: International Society for Optics and Photonics.

    Google Scholar 

  6. Lau, A. K. S., Wong, T. T. W., Ho, K. K. Y., Tang, M. T. H., Chan, A. C. S., Wei, X., Lam, E. Y., Shum, H. C., Wong, K. K. Y., & Tsia, K. K. (2014). Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 μm. Journal of Biomedical Optics, 19(7), 076001–076001.

    Article  Google Scholar 

  7. Diebold, E. D., Buckley, B. W., Gossett, D. R., & Jalali, B. (2013). Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nature Photonics, 7(10), 806–810.

    Article  Google Scholar 

  8. Jalali, B., & Asghari, M. H. (2014). The anamorphic stretch transform: Putting the squeeze on ‘big data’. Optics and Photonics News, 25(2), 24–31.

    Article  Google Scholar 

  9. Asghari, M. H., & Jalali, B. (2013). Anamorphic transformation and its application to time–bandwidth compression. Applied Optics, 52(27), 6735–6743.

    Article  Google Scholar 

  10. Asghari, M. H., & Jalali, B. (2014). Experimental demonstration of optical real-time data compression. Applied Physics Letters, 104(11), 111101.

    Article  Google Scholar 

  11. Chan, J., Mahjoubfar, A., Asghari, M., & Jalali, B. (2014). Reconstruction in time-bandwidth compression systems. Applied Physics Letters, 105(22), 221105.

    Article  Google Scholar 

  12. Bosworth, B. T., & Foster, M. A. (2014). High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing. In CLEO: Applications and technology (pp. ATh4P–3). Washington, DC: Optical Society of America.

    Google Scholar 

  13. Valley, G. C., Sefler, G. A., & Shaw, T. J. (2012). Compressive sensing of sparse radio frequency signals using optical mixing. Optics Letters, 37(22), 4675–4677.

    Article  Google Scholar 

  14. Mahjoubfar, A., Goda, K., Betts, G., & Jalali, B. (2013). Optically amplified detection for biomedical sensing and imaging. Journal of the Optical Society of America A, 30(10), 2124–2132.

    Article  Google Scholar 

  15. Goda, K., Ayazi, A., Gossett, D. R., Sadasivam, J., Lonappan, C. K., Sollier, E., Fard, A. M., Hur, S. C., Adam, J., Murray, C., et al. (2012). High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, 109(29), 11630–11635.

    Article  Google Scholar 

  16. Kling, J. (2012). Beyond counting tumor cells. Nature Biotechnology, 30(7), 578–580.

    Article  Google Scholar 

  17. Kærn, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: From theories to phenotypes. Nature Reviews Genetics, 6(6), 451–464.

    Article  Google Scholar 

  18. Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J., et al. (2006). Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biology, 7(10), R100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahjoubfar, A., Chen, C.L., Jalali, B. (2017). Time Stretch. In: Artificial Intelligence in Label-free Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-51448-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51448-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51447-5

  • Online ISBN: 978-3-319-51448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics