Skip to main content

Regulation of Nitrogen Fixation in Photosynthetic Purple Nonsulfur Bacteria

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

Biological nitrogen fixation (BNF) is the nitrogenase-catalyzed process in which dinitrogen (N2) is reduced to ammonia (NH3), the preferred nitrogen source in bacteria. All N2-fixing or diazotrophic bacteria have molybdenum-nitrogenases. In addition, some diazotrophs possess one or two alternative Mo-free nitrogenases, namely a vanadium and/or an iron-only nitrogenase, which are less efficient than Mo-nitrogenase in terms of ATP-consumption per N2 reduced. BNF is widespread in photosynthetic purple nonsulfur bacteria, which are capable of using light energy to generate ATP for nitrogenase activity. This review focusses on BNF regulation in the purple nonsulfur bacteria Rhodobacter capsulatus, Rhodopseudomonas palustris, and Rhodospirillum rubrum. Rp. palustris is one of few diazotrophs having both alternative nitrogenases, whereas Rb. capsulatus and Rs. rubrum have Fe-nitrogenases but no V-nitrogenase. Purple nonsulfur bacteria regulate BNF in response to ammonium, molybdenum, iron, oxygen, and light. BNF regulation involves common regulatory proteins including the two-component nitrogen regulatory system NtrB-NtrC, the transcriptional activator NifA, the nitrogen-specific sigma factor RpoN, the DraT-DraG system for posttranslational nitrogenase regulation, and at least two PII signal transduction proteins. When ammonium is limiting, NtrB phosphorylates NtrC, which in turn activates expression of nifA and other BNF-related genes. NifA and its homologs VnfA and AnfA activate expression of Mo, V, and Fe-nitrogenase genes, respectively, in concert with RpoN. DraT mediates nitrogenase switch-off by ADP-ribosylation upon ammonium addition or light deprivation, the latter condition causing energy depletion. DraG reactivates nitrogenase upon ammonium consumption or reillumination. PII-like proteins integrate the cellular nitrogen, carbon, and energy levels, and control activity of NtrB, NifA, DraT, and DraG. Beside these similarities in BNF regulation, there are species-specific differences. NifA is active as synthesized in Rb. capsulatus, but requires activation by PII in Rp. palustris and Rs. rubrum. Reversible ADP-ribosylation is the only mechanism regulating nitrogenase in Rs. rubrum, whereas Rb. capsulatus and Rp. palustris have additional ADP-ribosylation-independent mechanisms. Last but not least, molybdate directly represses anfA transcription and hence, Fe-nitrogenase expression in Rb. capsulatus, whereas expression of the alternative nitrogenases in Rp. palustris and Rs. rubrum respond to Mo-nitrogenase activity rather than to molybdate directly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adessi A, Concato M, Sanchini A, Rossi F, De Philippis R (2016) Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas strain. Appl Microbiol Biotechnol 100:2917–2926

    Article  CAS  PubMed  Google Scholar 

  • Blanchard CZ, Hales BJ (1996) Isolation of two forms of the nitrogenase VFe protein from Azotobacter vinelandii. Biochemistry 35:472–478

    Article  CAS  PubMed  Google Scholar 

  • Bowman WC, Kranz RG (1998) A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase. Genes Dev 12:1884–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Johansson M, Nordlund S (1999) Expression of PII and glutamine synthetase is regulated by PII, the ntrBC products, and processing of the glnBA mRNA in Rhodospirillum rubrum. J Bacteriol 181:6530–6534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chisnell JR, Premakumar R, Bishop PE (1988) Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J Bacteriol 170:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlan S, Lawrence C, McCue LA (2005) Rhodopseudomonas palustris regulons detected by cross-species analysis of alphaproteobacterial genomes. Appl Environ Microbiol 71:7442–7452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly HM, Pelletier DA, Lu TY, Lankford PK, Hettich RL (2006) Characterization of PII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris. Anal Biochem 357:93–104

    Article  CAS  PubMed  Google Scholar 

  • Cullen PJ, Bowman WC, Foster-Hartnett D, Reilly SC, Kranz RG (1998) Translational activation by an NtrC enhancer-binding protein. J Mol Biol 278:903–914

    Article  CAS  PubMed  Google Scholar 

  • Cullen PJ, Bowman WC, Kranz RG (1996) In vitro reconstitution and characterization of the Rhodobacter capsulatus NtrB and NtrC two-component system. J Biol Chem 271:6530–6536

    Article  CAS  PubMed  Google Scholar 

  • Cullen PJ, Foster-Hartnett D, Gabbert KK, Kranz RG (1994) Structure and expression of the alternative sigma factor, RpoN, in Rhodobacter capsulatus; physiological relevance of an autoactivated nifU2-rpoN superoperon. Mol Microbiol 11:51–65

    Article  CAS  PubMed  Google Scholar 

  • Curatti L, Rubio LM (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Sci 225:130–137

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Lehman L, Petrovich R, Shah VK, Roberts GP, Ludden PW (1996) Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 178:1445–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilworth MJ, Eady RR, Eldridge ME (1988) The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane. Biochem J 249:745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drepper T, Groß S, Yakunin AF, Hallenbeck PC, Masepohl B, Klipp W (2003) Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. Microbiology 149:2203–2212

    Article  CAS  PubMed  Google Scholar 

  • Drummond M, Walmsley J, Kennedy C (1996) Expression from the nifB promoter of Azotobacter vinelandii can be activated by NifA, VnfA, or AnfA transcriptional activators. J Bacteriol 178:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgren T, Nordlund S (2004) The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 186:2052–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgren T, Nordlund S (2005) Electron transport to nitrogenase in Rhodospirillum rubrum: identification of a new fdxN gene encoding the primary electron donor to nitrogenase. FEMS Microbiol Lett 245:345–351

    Article  CAS  PubMed  Google Scholar 

  • Edgren T, Nordlund S (2006) Two pathways of electron transport to nitrogenase in Rhodospirillum rubrum: the major pathway is dependent on the fix gene products. FEMS Microbiol Lett 260:30–35

    Article  CAS  PubMed  Google Scholar 

  • Elsen S, Dischert W, Colbeau A, Bauer CE (2000) Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J Bacteriol 182:2831–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer H-M (1994) Genetic regulation of nitrogen fixation in Rhizobia. Microbiol Rev 58:352–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer H-M, Bruderer T, Hennecke H (1988) Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res 16:2207–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer H-M, Fritsche S, Herzog B, Hennecke H (1989) Critical spacing between two essential cysteine residues in the interdomain linker of the Bradyrhizobium japonicum NifA protein. FEBS Lett 255:167–171

    Article  CAS  PubMed  Google Scholar 

  • Förster B, Maner K, Fassbinder F, Oelze J (1999) Reversible inactivation of nitrogenase in Rhodobacter capsulatus strain W107I deleted in the draTG gene region. FEMS Microbiol Lett 170:167–171

    Article  Google Scholar 

  • Foster-Hartnett D, Kranz RG (1992) Analysis of the promoters and upstream sequences of nifA1 and nifA2 in Rhodobacter capsulatus; activation requires ntrC but not rpoN. Mol Microbiol 6:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Foster-Hartnett D, Kranz RG (1994) The Rhodobacter capsulatus glnB gene is regulated by NtrC at tandem rpoN-independent promoters. J Bacteriol 176:5171–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster-Hartnett D, Cullen PJ, Monika EM, Kranz RG (1994) A new type of NtrC transcriptional activator. J Bacteriol 176:6175–6187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JD, He Y, Shelver D, Roberts GP, Ludden PW (1996) Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 178:6200–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Burris RH (1989) Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae. J Bacteriol 171:3168–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennaro G, Hübner P, Sandmeier U, Yakunin AF, Hallenbeck PC (1996) Cloning, characterization, and regulation of nifF from Rhodobacter capsulatus. J Bacteriol 178:3949–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gisin J, Müller A, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B (2010) A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 192:5943–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gollan U, Schneider K, Müller A, Schüddekopf K, Klipp W (1993) Detection of the in vivo incorporation of a metal cluster into a protein. The FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus. Eur J Biochem 215:25–35

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC (1992) Mutations affecting nitrogenase switch-off in Rhodobacter capsulatus. Biochim Biophys Acta 1118:161–168

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC, Gennaro G (1998) Stopped-flow kinetic studies of low potential electron carriers of the photosynthetic bacterium, Rhodobacter capsulatus: ferredoxin I and NifF. Biochim Biophys Acta 1365:435–442

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC, Meyer CM, Vignais PM (1982) Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: purification and molecular properties. J Bacteriol 149:708–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heiniger EK, Harwood CS (2015) Posttranslational modification of a vanadium nitrogenase. MicrobiologyOpen 4:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiniger EK, Oda Y, Samanta SK, Harwood CS (2012) How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl Environ Microbiol 78:1023–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill S, Kavanagh EP (1980) Roles of nifF and nifJ gene products in electron transport to nitrogenase in Klebsiella pneumoniae. J Bacteriol 141:470–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129:724–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann M-C, Müller A, Fehringer M, Pfänder Y, Narberhaus F, Masepohl B (2014a) Coordinated expression of fdxD and molybdenum nitrogenase genes promotes nitrogen fixation by Rhodobacter capsulatus in the presence of oxygen. J Bacteriol 196:633–640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffmann M-C, Pfänder Y, Fehringer M, Narberhaus F, Masepohl B (2014b) NifA- and CooA-coordinated cowN expression sustains nitrogen fixation by Rhodobacter capsulatus in the presence of carbon monoxide. J Bacteriol 196:3494–3502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffmann M-C, Wagner E, Langklotz S, Pfänder Y, Hött S, Bandow JE, Masepohl B (2016) Proteome profiling of the Rhodobacter capsulatus molybdenum response reveals a role of IscN in nitrogen fixation by Fe-nitrogenase. J Bacteriol 198:633–643

    Article  CAS  PubMed Central  Google Scholar 

  • Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Ribbe MW (2016) Biosynthesis of the metalloclusters of nitrogenases. Annu Rev Biochem 85:3.1–3.29

    Article  CAS  Google Scholar 

  • Hu Y, Lee CC, Ribbe MW (2012) Vanadium nitrogenase: a two-hit wonder? Dalton Trans 41:1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Huang JJ, Heiniger EK, McKinlay JB, Harwood CS (2010) Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl Environ Microbiol 76:7717–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hübner P, Masepohl B, Klipp W, Bickle TA (1993) nif gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations. Mol Microbiol 10:123–132

    Article  PubMed  Google Scholar 

  • Hübner P, Willison JC, Vignais PM, Bickle TA (1991) Expression of regulatory nif genes in Rhodobacter capsulatus. J Bacteriol 173:2993–2999

    Article  PubMed  PubMed Central  Google Scholar 

  • Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, Merrick M, Souza EM (2012) PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology 158:176–190

    Article  CAS  PubMed  Google Scholar 

  • Hwang JC, Chen CH, Burris RH (1973) Inhibition of nitrogenase-catalyzed reductions. Biochim Biophys Acta 292:256–270

    Article  CAS  PubMed  Google Scholar 

  • Igarashi RY, Seefeldt LC (2003) Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit Rev Biochem Mol Biol 38:351–384

    Article  CAS  PubMed  Google Scholar 

  • Jeong H-S, Jouanneau Y (2000) Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 182:1208–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Peliska JA, Ninfa AJ (1998a) Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37:12782–12794

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Peliska JA, Ninfa AJ (1998b) Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. Biochemistry 37:12795–12801

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau Y, Jeong H-S, Hugo N, Meyer C, Willison JC (1998) Overexpression in Escherichia coli of the rnf genes from Rhodobacter capsulatus. Characterization of two membrane-bound iron-sulfur proteins. Eur J Biochem 251:54–64

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau Y, Meyer CM, Vignais PM (1983) Regulation of nitrogenase activity through iron protein interconversion into an active and an inactive form in Rhodopseudomonas capsulata. Biochim Biophys Acta 749:318–328

    Article  CAS  Google Scholar 

  • Jouanneau Y, Roby C, Meyer CM, Vignais PM (1989) ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus. Biochemistry 28:6524–6530

    Article  CAS  Google Scholar 

  • Kelly MJ, Poole RK, Yates MG, Kennedy C (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494–498

    Article  CAS  PubMed  Google Scholar 

  • Kerby RL, Roberts GP (2011) Sustaining N2-dependent growth in the presence of CO. J Bacteriol 193:774–777

    Article  CAS  PubMed  Google Scholar 

  • Kerby RL, Youn H, Roberts GP (2008) RcoM: a new single-component transcriptional regulator of CO metabolism in bacteria. J Bacteriol 190:3336–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranz RG, Haselkorn R (1985) Characterization of nif regulatory genes in Rhodopseudomonas capsulata using lac gene fusions. Gene 40:203–215

    Article  CAS  PubMed  Google Scholar 

  • Kumagai H, Fujiwara T, Matsubara H, Saeki K (1997) Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry 36:5509–5521

    Article  CAS  PubMed  Google Scholar 

  • Kutsche M, Leimkühler S, Angermüller S, Klipp W (1996) Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of σ54, and repressed by molybdenum. J Bacteriol 178:2010–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres Y, Torres JL, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Hu Y, Ribbe MW (2009) Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. Proc Natl Acad Sci U S A 106:9209–9214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman LJ, Roberts GP (1991) Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J Bacteriol 173:5705–5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JD, Hu CZ, Yoch DC (1987) Changes in amino acid and nucleotide pools of Rhodospirillum rubrum during switch-off of nitrogenase activity initiated by NH4 + or darkness. J Bacteriol 169:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockshin A, Burris RH (1965) Inhibitors of nitrogen fixation in extracts from Clostridium pasteurianum. Biochim Biophys Acta 111:1–10

    Article  CAS  PubMed  Google Scholar 

  • MacKellar D, Lieber L, Norman JS, Bolger A, Tobin C, Murray JW, Oksaksin M, Chang RL, Ford TJ, Nguyen PQ, Woodward J, Permingeat HR, Joshi NS, Silver PA, Usadel B, Rutherford AW, Friesen ML, Prell J (2016) Streptomyces thermoautotrophicus does not fix nitrogen. Sci Rep 6:20086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masepohl B, Klipp W (1996) Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus. Arch Microbiol 165:80–90

    Article  CAS  Google Scholar 

  • Masepohl B, Kaiser B, Isakovic N, Richard CL, Kranz RG, Klipp W (2001) Urea utilization in the phototrophic bacterium Rhodobacter capsulatus is regulated by the transcriptional activator NtrC. J Bacteriol 183:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masepohl B, Klipp W, Pühler A (1988) Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. Mol Gen Genet 212:27–37

    Article  CAS  PubMed  Google Scholar 

  • Masepohl B, Krey R, Klipp W (1993) The draTG gene region of Rhodobacter capsulatus is required for post-translational regulation of both the molybdenum and the alternative nitrogenase. J Gen Microbiol 139:2667–2675

    Article  CAS  PubMed  Google Scholar 

  • McGlynn SE, Boyd ES, Peters JW, Orphan VJ (2013) Classifying the metal dependence of uncharacterized nitrogenases. Front Microbiol 3:419

    Article  PubMed  PubMed Central  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21:244–251

    Article  CAS  PubMed  Google Scholar 

  • Morett E, Buck M (1988) NifA-dependent in vivo protection demonstrates that the upstream activator sequence of nif promoters is a protein binding site. Proc Natl Acad Sci U S A 85:9401–9405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morett E, Buck M (1989) In vivo studies on the interaction of RNA polymerase-σ54 with Klebsiella pneumoniae and Rhizobium meliloti nifH promoters: The role of NifA in the formation of an open promoter complex. J Mol Biol 210:65–77

    Article  CAS  PubMed  Google Scholar 

  • Moshiri F, Kim JW, Fu C, Maier RJ (1994) The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 14:101–114

    Article  CAS  PubMed  Google Scholar 

  • Mosley CS, Suzuki JY, Bauer CE (1994) Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol 176:7566–7573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller A, Püttmann L, Barthel R, Schön M, Lackmann J-W, Narberhaus F, Masepohl B (2010) Relevance of individual Mo-box nucleotides to DNA binding by the related molybdenum-responsive regulators MopA and MopB in Rhodobacter capsulatus. FEMS Microbiol Lett 307:191–200

    Article  PubMed  CAS  Google Scholar 

  • Munk AC, Copeland A, Lucas S, Lapidus A, Del Rio TG, Barry K, Detter JC, Hammon N, Israni S, Pitluck S, Brettin T, Bruce D, Han C, Tapia R, Gilna P, Schmutz J, Larimer F, Land M, Kyrpides NC, Mavromatis K, Richardson P, Rohde M, Göker M, Klenk H-P, Zhang Y, Roberts GP, Reslewic S, Schwartz DC (2011) Complete genome sequence of Rhodospirillum rubrum type strain (S1T). Stand Genomic Sci 4:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordlund S, Högbom M (2013) ADP-ribosylation, a mechanism regulating nitrogenase activity. FEBS J 280:3484–3490

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Samanta SK, Rey FE, Wu L, Liu X, Yan T, Zhou J, Harwood CS (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187:7784–7794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oetjen J, Reinholf-Hurek B (2009) Characterization of the DraT/DraG system for posttranslational regulation of nitrogenase in the endophytic betaproteobacterium Azoarcus sp. strain BH72. J Bacteriol 191:3726–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MAS, Baura VA, Aquino B, Huergo LF, Kadowaki MAS, Chubatsu LS, Souza EM, Dixon R, Pedrosa FO, Wassem R, Monteiro RA (2009) Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity. Res Microbiol 160:389–395

    Article  CAS  PubMed  Google Scholar 

  • Paschen A, Drepper T, Masepohl B, Klipp W (2001) Rhodobacter capsulatus nifA mutants mediating nif gene expression in the presence of ammonium. FEMS Microbiol Lett 200:207–213

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski A, Riedel K-U, Klipp W, Dreiskemper P, Groß S, Bierhoff H, Drepper T, Masepohl B (2003) Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. J Bacteriol 185:5240–5247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierrard J, Ludden PW, Roberts GP (1993a) Posttranslational regulation of nitrogenase in Rhodobacter capsulatus: existence of two independent regulatory effects of ammonium. J Bacteriol 175:1358–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierrard J, Willison JC, Vignais PM, Gaspar JL, Ludden PW, Roberts GP (1993b) Site-directed mutagenesis of the target arginine for ADP-ribosylation of nitrogenase component II in Rhodobacter capsulatus. Biochem Biophys Res Commun 192:1223–1229

    Article  CAS  PubMed  Google Scholar 

  • Pratte BS, Thiel T (2006) High-affinity vanadate transport system in the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 188:464–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preker P, Hübner P, Schmehl M, Klipp W, Bickle TA (1992) Mapping and characterization of the promoter elements of the regulatory nif genes rpoN, nifA1 and nifA2 in Rhodobacter capsulatus. Mol Microbiol 6:1035–1047

    Article  CAS  PubMed  Google Scholar 

  • Radchenko MV, Thornton J, Merrick M (2013) PII signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate. Proc Natl Acad Sci U S A 110:12948–12953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey FE, Heiniger EK, Harwood CS (2007) Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73:1665–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Ortiz JM, Burris RH (1975) Interactions among substrates and inhibitors of nitrogenase. J Bacteriol 123:537–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts GP, Kerby RL, Youn H, Conrad M (2005) CooA, a paradigm for gas sensing regulatory proteins. J Inorg Biochem 99:280–292

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues TE, Souza VE, Monteiro RA, Gerhardt EC, Araújo LM, Chubatsu LS, Souza EM, Pedrosa FO, Huergo LF (2011) In vitro interaction between the ammonium transport protein AmtB and partially uridylylated forms of the PII protein GlnZ. Biochim Biophys Acta 1814:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Schlesier J, Rohde M, Gerhardt S, Einsle O (2016) A conformational switch triggers nitrogenase protection from oxygen damage by Shetna protein II (FeSII). J Am Chem Soc 138:239–247

    Article  CAS  PubMed  Google Scholar 

  • Schmehl M, Jahn A, zu Vilsendorf AM, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–515

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Gollan U, Dröttboom M, Selsemeier-Voigt S, Müller A (1997) Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Eur J Biochem 244:789–800

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Müller A, Schramm U, Klipp W (1991) Demonstration of a molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion strain of Rhodobacter capsulatus. Eur J Biochem 195:653–661

    Article  CAS  PubMed  Google Scholar 

  • Schüddekopf K, Hennecke S, Liese U, Kutsche M, Klipp W (1993) Characterization of anf genes specific for the alternative nitrogenase and identification of nif genes required for both nitrogenases in Rhodobacter capsulatus. Mol Microbiol 8:673–684

    Article  PubMed  Google Scholar 

  • Selao TT, Edgren T, Wang H, Norén A, Nordlund S (2011) Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness. Microbiology 157:1834–1840

    Article  CAS  PubMed  Google Scholar 

  • Sganga MW, Bauer CE (1992) Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus. Cell 68:945–954

    Article  CAS  PubMed  Google Scholar 

  • Shah VK, Stacey G, Brill WJ (1983) Electron transport to nitrogenase. Purification and characterization of pyruvate:flavodoxin oxidoreductase, the nifJ gene product. J Biol Chem 258:12064–12068

    CAS  PubMed  Google Scholar 

  • Shelver D, Kerby RL, He Y, Roberts GP (1995) Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol 177:2157–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Dean DR, Newton WE (1997) Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein. Biochemistry 36:4884–4894

    Article  CAS  PubMed  Google Scholar 

  • Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C, Paces V, Haselkorn R (2010) Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB1003. J Bacteriol 192:3545–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studholme DJ, Pau RN (2003) A DNA element recognized by the molybdenum-responsive transcription factor ModE is conserved in proteobacteria, green sulphur bacteria and archaea. BMC Microbiol 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira PF, Jonsson A, Frank M, Wang H, Nordlund S (2008) Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Microbiology 154:2336–2347

    Article  CAS  PubMed  Google Scholar 

  • Teixeira PF, Wang H, Nordlund S (2010) Nitrogenase switch-off and regulation of ammonium assimilation in response to light deprivation in Rhodospirillum rubrum are influenced by the nitrogen source used during growth. J Bacteriol 192:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P-L, Hallenbeck PC (2008) Ammonia-induced formation of an AmtB-GlnK complex is not sufficient for nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 190:1588–1594

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P-L, Hallenbeck PC (2009) Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor. Mol Microbiol 71:12–22

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P-L, Drepper T, Masepohl B, Hallenbeck PC (2007) Membrane sequestration of PII proteins and nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 189:5850–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ureta A, Nordlund S (2002) Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein. J Bacteriol 184:5805–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Heeswijk WC, Westerhoff HV, Boogerd FC (2013) Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 77:628–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Angermüller S, Klipp W (1993) Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol 175:3031–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Franke CC, Nordlund S, Norén A (2005) Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1. FEMS Microbiol Lett 253:273–279

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang L, Liu Z, Zhao D, Liu X, Zhang B, Xie J, Hong Y, Li P, Chen S, Dixon R, Li J (2013) A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet 9:e1003865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiethaus J, Müller A, Neumann M, Neumann S, Leimkühler S, Narberhaus F, Masepohl B (2009) Specific interactions between four molybdenum-binding proteins contribute to Mo-dependent gene regulation in Rhodobacter capsulatus. J Bacteriol 191:5205–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiethaus J, Wirsing A, Narberhaus F, Masepohl B (2006) Overlapping and specialized functions of the molybdenum-dependent regulators MopA and MopB in Rhodobacter capsulatus. J Bacteriol 188:8441–8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe DM, Zhang Y, Roberts GP (2007) Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum. J Bacteriol 189:6861–6869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakunin AF, Hallenbeck PC (1998a) Purification and characterization of pyruvate oxidoreductase from the photosynthetic bacterium Rhodobacter capsulatus. Biochim Biophys Acta 1409:39–49

    Article  CAS  PubMed  Google Scholar 

  • Yakunin AF, Hallenbeck PC (1998b) Short-term regulation of nitrogenase activity by NH4 + in Rhodobacter capsulatus: multiple in vivo nitrogenase responses to NH4 + addition. J Bacteriol 180:6392–6395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yakunin AF, Hallenbeck PC (2002) AmtB is necessary for NH4 +-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 184:4081–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakunin AF, Gennaro G, Hallenbeck PC (1993) Purification and properties of a nif-specific flavodoxin from the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 175:6775–6780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakunin AF, Laurinavichene TV, Tsygankov AA, Hallenbeck PC (1999) The presence of ADP-ribosylated Fe protein of nitrogenase in Rhodobacter capsulatus is correlated with cellular nitrogen status. J Bacteriol 181:1994–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Pelmenschikow V, Dapper CH, Scott AD, Newton WE, Cramer SP (2012) IR-monitored photolysis of CO-inhibited nitrogenase: a major EPR-silent species with coupled terminal CO ligands. Chemistry 18:16349–16357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gladyshev VN (2008) Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol 379:881–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gladyshev VN (2010) General trends in trace element utilization revealed by comparative genomic analysis of Co, Cu, Mo, Ni, and Se. J Biol Chem 285:3393–3405

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Burris RH, Ludden PW, Roberts GP (1996) Presence of a second mechanism for the posttranslational regulation of nitrogenase activity in Azospirillum brasilense in response to ammonium. J Bacteriol 178:2948–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cummings AD, Burris RH, Ludden PW, Roberts GP (1995) Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. J Bacteriol 177:5322–5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2000) Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 182:983–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2001) Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pohlmann EL, Roberts GP (2004) Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A 101:2782–2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pohlmann EL, Roberts GP (2005) GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J Bacteriol 187:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wolfe DM, Pohlmann EL, Conrad MC, Roberts GP (2006) Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. Microbiology 152:2075–2089

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhu Y, Pohlmann EL, Li J, Zhang Y, Roberts GP (2008) Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum. Microbiology 154:2689–2699

    Article  CAS  Google Scholar 

  • Zhu Y, Conrad MC, Zhang Y, Roberts GP (2006) Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals. J Bacteriol 188:1866–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Masepohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Masepohl, B. (2017). Regulation of Nitrogen Fixation in Photosynthetic Purple Nonsulfur Bacteria. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-51365-2_1

Download citation

Publish with us

Policies and ethics