Skip to main content

Fracture Behavior and Grain Boundary Sliding During High-Temperature Low-Stress Deformation of AZ31 Magnesium Alloy

  • Conference paper
  • First Online:
Mechanical and Creep Behavior of Advanced Materials

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2438 Accesses

Abstract

Low-stress high-temperature tensile-creep behavior of AZ31 Mg alloy was investigated to characterize microstructure evolution, uncover dominant creep mechanism and find a correlation with common creep models. The stress exponent, inverse grain size exponent and activation energy value were evaluated. Cavity nucleation from stress concentration sites, types of fracture surfaces and microstructural evidence of grain migrations were observed in crept samples that are indicative of Rachinger mechanism of grain boundary sliding (GBS). Experimental data reveal a reasonable correlation with Langdon’s model. Further analysis on fracture behavior of this alloy in a wider range of stresses show that they follow Monkman-Grant model in predicting the fracture time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. N. Farahbakhsh, P. ShahbeigiRoodposhti, A.S. Ayoub, R.A. Venditti, J.S. Jur, Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. 132, 41857 (2014)

    Google Scholar 

  2. N. Farahbakhsh, R.A. Venditti, J.S. Jur, Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro- and nano-sized fillers from recycled cotton T-shirts. Cellulose 21, 2743–2755 (2014)

    Article  Google Scholar 

  3. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, R.O. Scattergood, Dislocation density evolution during creep of AZ31 Mg alloy: a study by X-ray diffraction line profile analysis, Metallogr. Microstruct. Anal. 4, 337–343 (2015)

    Google Scholar 

  4. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, R. Scattergood, Effects of microstructure and processing methods on creep behavior of AZ91 magnesium alloy. J. Mater. Eng. Perform. 25, 3697–3709 (2016)

    Article  Google Scholar 

  5. S.W. Chung, H. Watanabe, W.-J. Kim, K. Higashi, Creep deformation mechanisms in coarse-grained solid solution Mg alloys. Mater. Trans. 45, 1266–1271 (2004)

    Article  Google Scholar 

  6. W. Kim, S. Chung, C. Chung, D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Mater. 49, 3337–3345 (2001)

    Article  Google Scholar 

  7. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Fracture behavior of AZ31 magnesium alloy during low stress high temperature deformation, Metall. Microstruct. Anal. 4, 91–101 (2015)

    Google Scholar 

  8. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Microstructure development of high temperature deformed AZ31 magnesium alloys. Mater. Sci. Eng. A 626, 195–202 (2015)

    Article  Google Scholar 

  9. R. Korla, A.H. Chokshi, A constitutive equation for grain boundary sliding: an experimental approach. Metall. Mater. Trans. A 45, 698–708 (2013)

    Article  Google Scholar 

  10. R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43, 7366–7371 (2008)

    Article  Google Scholar 

  11. S. Spigarelli, M. El Mehtedi, D. Ciccarelli, M. Regev, Effect of grain size on high temperature deformation of AZ31 alloy. Mater. Sci. Eng. A 528, 6919–6926 (2011)

    Article  Google Scholar 

  12. J.A. Valle, M.T. Pérez-Prado, O.A. Ruano, Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall. Mater. Trans. A 36, 1427–1438 (2005)

    Article  Google Scholar 

  13. H. Somekawa, T. Mukai, Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. Comput. Mater. Sci. 77, 424–429 (2013)

    Article  Google Scholar 

  14. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Creep deformation mechanisms and related microstructure development of AZ31 magnesium alloy, in Magnesium Technology 2015, ed. By M.V. Manuel, A. Singh, M. Alderman, N.R. Neelameggham (TMS, 2015), pp. 29–34

    Google Scholar 

  15. W.A. Rachinger, Relative grain translations in the plastic flow of aluminium.pdf. J. Inst. Met. D 81, 33–41 (1952)

    Google Scholar 

  16. I.M. Lifshitz, On the theory of diffusion-viscous flow of polycrystalline bodies. Sov. Phys. JETP 17, 909–920 (1963)

    Google Scholar 

  17. W.R. Cannon, The contribution of grain boundary sliding to axial strain during diffusion creep. Philos. Mag. 25, 1489–1497 (1972)

    Article  Google Scholar 

  18. T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. 42, 2437–2443 (1994)

    Article  Google Scholar 

  19. J.M. Alegre, I.I. Cuesta, M. Lorenzo, An extension of the Monkman-Grant model for the prediction of the creep rupture time using small punch tests. Exp. Mech. 54, 1441–1451 (2014)

    Article  Google Scholar 

  20. F. Larson, J. Miller, Time-temperature relationship for rupture and creep stresses. Trans. ASME 74, 765–775 (1952)

    Google Scholar 

  21. R. Orr, O. Sherby, J. Dorn, Correlations of rupture data for metals at elevated temperatures. Transit. ASM 46, 113–118 (1954)

    Google Scholar 

  22. S. Manson, A. Haferd, A linear time-temperature relation for extrapolation of creep and stress rupture data, NACATN, 2890 (1953)

    Google Scholar 

  23. B. Wilshire, New high-precision creep procedures for accurate life extension of plant. Int. J. Press. Vessel Pip. 39, 73–82 (1989)

    Article  Google Scholar 

  24. F.C. Monkman, N.J. Grant, An empirical relationship between rupture life and minimum creep rate in creep rupture tests. Proc. ASTM 56, 593 (1956)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Science Foundation, Grant 0968825.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiman Shahbeigi Roodposhti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Roodposhti, P.S., Murty, K.L. (2017). Fracture Behavior and Grain Boundary Sliding During High-Temperature Low-Stress Deformation of AZ31 Magnesium Alloy. In: Charit, I., Zhu, Y., Maloy, S., Liaw, P. (eds) Mechanical and Creep Behavior of Advanced Materials. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51097-2_23

Download citation

Publish with us

Policies and ethics