Skip to main content

Algal Biomass Pretreatment for Improved Biofuel Production

  • Chapter
  • First Online:
Algal Biofuels

Abstract

Algal biomass contributes significantly in the biomass based renewable energy generation. Algae are photosynthetic aquatic microorganism, which utilize CO2 for synthesis of biomass and other metabolites. Algae have ability to utilize nutrients from range of wastewaters and CO2 from the various gaseous streams including industrial flue gas (Prajapati et al. 2013). Simultaneous biomass production and wastewater treatment further improve the potential of algal biomass as feedstock for biofuel production (Chinnasamy et al. 2010; Choudhary et al. 2016; Prajapati et al. 2016). Major biofuels produced using algal biomass include: biodiesel, bioethanol, biooil, biohydrogen and methane (Prajapati and Malik 2015). However, irrespective of the biofuel production route, the recalcitrant nature of the algal cell wall is the major hurdle. The recalcitrant nature of the algae is due to the presence of complex biopolymers such as microfibrillar polysaccharides, matrix polysaccharides and proteoglycans. Hence, pretreatment of the algal biomass usually becomes necessary to improve the biofuel extraction. Pretreatment of algal cells deals with extraction process and yield of biomass/biofuel. This phase includes the cell wall disruption mediated by physical (mechanical), chemical and enzymatic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard B, Templier J (2001) High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum. Phytochemistry 57:459–467

    Article  CAS  Google Scholar 

  • Allard B, Rager M-N, Templier J (2002) Occurrence of high molecular weight lipids (C80+) in the trilaminar outer cell walls of some freshwater microalgae. A reappraisal of algaenan structure. Org Geochem 33:789–801

    Article  CAS  Google Scholar 

  • Alzate ME, Munoz R, Rogalla F, Fdz-Polanco F, Perez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494

    Article  CAS  Google Scholar 

  • Baldev E, Mubarak AD, Dhivya M, Kanimozhi M, Shakena FM (2014) Facile and novel strategy for methods of extraction of biofuel grade lipids from microalgae an experimental report. Int J Biotechnol Wellness Ind 3:121–127

    Article  Google Scholar 

  • Burczyk J, TermiÅ„ska-Pabis K, Åšmietana B (1995) Cell wall neutral sugar composition of Chlorococcalean algae forming and not forming acetolysis resistant biopolymer. Phytochemistry 38:837–841

    Article  CAS  Google Scholar 

  • Burczyk J, Smietana B, TermiÅ„ska-Pabis K, Zych M, Kowaloski P (1999) Comparison of nitrogen content amino acid composition and glucosamine content of cell walls of various Chlorococcalean algae. Phytochemistry 51:491–497

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Choudhary P, Prajapati SK, Malik A (2016) Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol Eng 91:221–230

    Article  Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325

    Article  CAS  Google Scholar 

  • Couderchet M, Schmalfuβ J, BÓ§ger P (1996) Incorporation of oleic acid into sporopollenin and its inhibition by the chloroacetamide herbicide metazochlor. Pestic Biochem Physiol 55:189–199

    Article  CAS  Google Scholar 

  • De Souza Silva APF, Costa MC, Lopes AC, Neto EFA, Leitao RC (2014) Comparison of pretreatment methods for total lipids extraction from mixed microalgae. Renewable Energy 63:762–766

    Article  Google Scholar 

  • Dobritsa AA, Shestha J, Morant M, Pinot F, Matsuno M, Swanson R, Lindberg Møller B, Preuss D (2009) CYP704B1 is a long chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589

    Article  CAS  Google Scholar 

  • Doucha J, Vansky L (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    Article  CAS  Google Scholar 

  • Ehimen EA, Holm-Nielsen JB, Poulsen M, Boelsmand JE (2013) Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renewable Energy 50:476–480

    Article  CAS  Google Scholar 

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253

    Article  CAS  Google Scholar 

  • González-Fernández C, Sialve B, Bernet N, Steyer JP (2012a) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111

    Article  Google Scholar 

  • González-Fernández C, Sialve B, Bernet N, Steyer JP (2012b) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616

    Article  Google Scholar 

  • Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardoso MT (2007) Functional food oil colored by pigments extracted from microalgae with supercritical CO2. Food Chem 101:717–723

    Article  CAS  Google Scholar 

  • Gouveia L, Batista PA, Nobre PB, Marques AP, Moura P (2012) Exploring Scenedesmus obliquus and Nannochloropsis sp. potential as a sustainable raw material for biofuels and high added value compounds. Congreso Iberoamericano Sobre Bioref 78:707–707

    Google Scholar 

  • Greenwell HC, Laurens LML, Shields JR, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc, Interface 7:703–726

    Article  CAS  Google Scholar 

  • Grima ME, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Guldhe A, Singh B, Rawat I, Ramluckan K, Bux F (2014) Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 128:46–52

    Article  CAS  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    Article  CAS  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467

    Article  CAS  Google Scholar 

  • Harun R, Yip JWS, Thiruvenkadam S, Ghani WAK et al (2014) Algal biomass conversion to bioethanol - a step-by-step assessment. Biotechnol J 9:73–86

    Article  CAS  Google Scholar 

  • Honjoh K, Suga K, Shinohara F, Maruyama I, Miyamoto T, Hatano S, Iio M (2003) Preparation of protoplasts from Chlorella vulgaris K-73122 and cell wall generation of protoplasts from C. vulgaris K-73122 and C-27. J Fac Agric, Kyushu Univ 47:257–266

    Google Scholar 

  • Huang Y, Hong A, Zhang D, Li L (2014) Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris. Environ Technol 35:931–937

    Article  CAS  Google Scholar 

  • Jaenicke L, Kuhne W, Spessert R, Wahle U, Waffenschmidt S (1987) Cell-wall lytic enzymes (autolysins) of Chlamydomonas reinhardtii are (hydroxy)proline-specific proteases. Eur J Biochem 170:485–491

    Article  CAS  Google Scholar 

  • Kodner RB, Summons RE, Knoll AH (2009) Phylogenetic investigation of the aliphatic, non-hydrolysable biopolymer algaenan, with a focus on green algae. Org Geochem 40:854–862

    Article  CAS  Google Scholar 

  • Kontkanen H, Westerholm-Parvinen A, Saloheimo M, Bailey M, RÓ“ttÓ§ M, Mattila I, Mohina M, Kalkkinen N, Nakari-SetÓ“lÓ“ T, Buchert J (2009) Novel Coprinopsis cinera polyesterase that hydrolyses cutin and suberin. Appl Environ Microbiol 75:2148–2157

    Article  CAS  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Lifecycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  • Laurens LML, Nagle N, Davis R, Sweeney N, Van Wychen S, Lowell A, Pienkos PT (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem 17:1145–1158

    Article  CAS  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  CAS  Google Scholar 

  • Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014a) Autohydrolysis and alkaline pretreatment effect on Chlorella vulgaris and Scenedesmus sp. methane production. Energy 78:48–52

    Article  CAS  Google Scholar 

  • Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014b) Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers Manage 85:551–557

    Article  CAS  Google Scholar 

  • Malis-Arad S, McGowan RE (1982) A ‘point of no return’ in the cell cycle of Chlorella. Plant Cell Physiol 23:397–401

    Article  CAS  Google Scholar 

  • Markelova AG, Vladimirova MG, Kuptsova ES (2000) A comparison of cytochemical methods for the rapid evaluation of microalgal viability. Russ J Plant Physiol 47:815–819

    Article  CAS  Google Scholar 

  • Mendez L, Mahdy A, Demuez M, Ballesteros M, González-Fernández C (2014) Effect of high pressure thermal pretreatment on Chlorella vulgaris biomass: organic matter solubilisation and biochemical methane potential. Fuel 117:674–679. doi:10.1016/j.fuel.2013.09.032

    Article  CAS  Google Scholar 

  • Menendez JMB, Arenillas A, Diaz JAM, Boffa L, Mantegna S (2013) Optimization of microalgae oil extraction under ultrasound and microwave irradiation. J Chem Technol Biotechnol 89:1779–1784

    Article  Google Scholar 

  • Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113:539–547

    Article  CAS  Google Scholar 

  • Miao H, Lu M, Zhao M, Huang Z, Ren H, Yan Q, Ruan W (2013) Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage. Bioresour Technol 149:359–366

    Article  CAS  Google Scholar 

  • Montane D, Farriol X, Salvado J, Jollez P, Chornet E (1998) Application of steam explosion to the fractionation and rapid vapor-phase alkaline pulping of wheat straw. Biomass Bioenergy 14:261–276

    Article  CAS  Google Scholar 

  • Munir N, Sharif N, Naz S, Saleem F, Manzoor F (2013) Harvesting and processing of microalgae biomass fractions for biodiesel production (a review). J Sci Technol Dev 23:235–243

    Google Scholar 

  • Nguyen T-AD, Kim K-R, Nguyen M-T, Kim MS, Kim D, Sim SJ (2010) Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int J Hydrogen Energy 35:13035–13040

    Article  CAS  Google Scholar 

  • Pasquet V, Cherouvrier JR, Farhat F, Thiery V, Piot JM (2011) Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochem 46:59–67

    Article  CAS  Google Scholar 

  • Passos F, Ferrer I (2014) Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 48:7171–7178

    Article  CAS  Google Scholar 

  • Passos F, Uggetti E, Carrère H, Ferrer I (2014) Pretreatment of microalgae to improve biogas production: a review. Bioresour Technol 172:403–412

    Article  CAS  Google Scholar 

  • Pattanaik B, Roleda MY, Schumann R, Karsten U (2008) Isolate-specific effects of ultraviolet radiation on photosynthesis, growth and mycosporine-like amino acids in the microbial mat-forming cyanobacterium Microcoleus chthonoplastes. Planta 227:907–916

    Article  CAS  Google Scholar 

  • Pernet F, Tremblay R (2003) Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids 38:1191–1195

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. Rev J Chromatogr A 1163:2–24

    Article  CAS  Google Scholar 

  • Prabakaran P, Ravindran RD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53:150–154

    Article  CAS  Google Scholar 

  • Prajapati S, Malik A (2015) Algal biomass as feedstock for biomethane production: an introduction. J Environ Soc Sci 2:103

    Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425

    Article  CAS  Google Scholar 

  • Prajapati SK, Kumar P, Malik A, Choudhary P (2014) Exploring pellet forming filamentous fungi as tool for harvesting non-flocculating unicellular microalgae. Bioenergy Res 7:1430–1440

    Article  CAS  Google Scholar 

  • Prajapati SK, Bhattacharya A, Malik A, Vijay VK (2015a) Pretreatment of algal biomass using fungal crude enzymes. Algal Res 8:8–14

    Article  Google Scholar 

  • Prajapati SK, Malik A, Vijay VK, Sreekrishnan TR (2015b) Enhanced methane production from algal biomass through short duration enzymatic pretreatment and codigestion with carbon rich waste. RSC Adv 5:67175–67183

    Article  CAS  Google Scholar 

  • Prajapati SK, Malik A, Choudhary P (2016) Screening native microalgal consortia for biomass production and nutrient removal from rural wastewatersfor bioenergy applications. Ecol Eng 91:221–230. doi:10.1016/j.ecoleng.2015.11.056

    Article  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514

    Article  CAS  Google Scholar 

  • Ryckebosch E, Myuylaert K, Foubert I (2011) Optimisation of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89:189–198

    Article  Google Scholar 

  • Salmon E, van Duin ACT, Lorant F, Marquaire P-M, Goddard WA III (2009) Thermal decomposition in algaenan of Botryococcus braunii race L. Part 2: molecular dynamics simulations using the ReaxFF reactive force field. Org Geochem 40:416–427

    Article  CAS  Google Scholar 

  • Sanders WB, Moe RL, Ascaso C (2005) Ultrastructural study of the brown alga Pteroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotine). Eur J Phycol 40:353–361

    Article  CAS  Google Scholar 

  • Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2:51–57

    CAS  Google Scholar 

  • Surendhiran D, Vijay M (2014) Effect of various pretreatment for extraction intracellular lipid from Nannochloropsis oculata under nitrogen replete and depleted conditions. ISRN Chem Eng 2014(536310):1–9

    Article  Google Scholar 

  • USGS (2015) Quality assurance/quality control manual: Ohio water microbiology laboratory. U.S. Department of the Interior, Reston

    Google Scholar 

  • Van der Geer J, Hanraads JAJ, Lupton RA (2010) The art of writing a scientific article. J Sci Commun 163:51–59

    Google Scholar 

  • Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833

    Article  CAS  Google Scholar 

  • Wiltshire KH, Boersma M, Moller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34:119–126

    Article  CAS  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Fermentative hydrogen production from lipid-extracted microalgal biomass residues. Appl Energy 88:3468–3472

    Article  CAS  Google Scholar 

  • Yun Y-M, Kim D-H, Oh Y-K, Shin H-S, Jung K-W (2014) Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production. Bioresour Technol 159:365–372

    Article  CAS  Google Scholar 

  • Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224

    Article  CAS  Google Scholar 

  • Zych M, Burczyk J, Kotowska M, KapuÅ›cik A, BanaÅ› A, Stolarczyk A, Terminska-Pabis K, Dudek D, Klasik S (2009) Differences in staining of the unicellular algae Chlorococcales as a function of algaenan content. Acta Agron Hung 57:377–381

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Prajapti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mishra, V., Dubey, A., Prajapti, S.K. (2017). Algal Biomass Pretreatment for Improved Biofuel Production. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_13

Download citation

Publish with us

Policies and ethics