Skip to main content

Advancements in Algal Harvesting Techniques for Biofuel Production

  • Chapter
  • First Online:
Algal Biofuels

Abstract

Increasing population and severe energy crisis has confronted into an ill-shaped economy worldwide. The need of this hour is to research upon new alternative technology, which not only fulfils the energy requisites but also look after the cost-effectiveness and environmental safety. Biofuel production, from several organic substrates or biomass, is one such technology which has recently gained importance. Algae are simple micro-organisms which have been proved to be a highly potent feedstock for biofuel production at lab-scale conditions. However, the pilot scale and commercial scale utilization of this high value organism is not very feasible as highly stable suspensions of algae do not permit easy separation or its concentration/dewatering. These separation techniques are either successful only at low scale or require high energy inputs for large scale separation, which is very much uneconomical. This paper reviews several approaches of algal harvesting and its advancements for reducing the process cost as well as increasing the biomass yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MA, Wan C, Guo S-L, Zhao X-Q, Huang Z-Y, Yang Y-L, Chang J-S, Bai F-W (2014) Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. J Biosci Bioeng 118:29–33. doi:10.1016/j.jbiosc.2013.12.021

    Article  CAS  Google Scholar 

  • Alfafara CG, Nakano K, Nomura N, Igarashi T, Matsumura M (2002) Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater. J Chem Technol Biotechnol 77:871–876. doi:10.1002/jctb.649

    Article  CAS  Google Scholar 

  • Al-Hothaly KA, Adetutu EM, Taha M, Fabbri D, Lorenzetti C, Conti R, May BH, Shar SS, Bayoumi RA, Ball AS (2015) Bio-harvesting and pyrolysis of the microalgae Botryococcus braunii. Bioresour Technol 191:117–123. doi:10.1016/j.biortech.2015.04.113

    Article  CAS  Google Scholar 

  • Azarian G, Mesdaghinia A, Vaezi F, Nabizadeh R, Nematollahi D (2007) Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iran J Public Health 36:57–64

    CAS  Google Scholar 

  • Baerdemaeker TD, Lemmens B, Dotremont C, Fret J, Roef L, Goiris K, Diels L (2013) Benchmark study on algae harvesting with backwashable submerged flat panel membranes. Bioresour Technol 129:582–591. doi:10.1016/j.biortech.2012.10.153

    Article  Google Scholar 

  • Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydr Polym 92:675–681. doi:10.1016/j.carbpol.2012.09.022

    Article  CAS  Google Scholar 

  • Barrut B, Blancheton JP, Muller-Feuga A, René F, Narváez C, Champagne JY, Grasmick A (2013) Separation efficiency of a vacuum gas lift for microalgae harvesting. Bioresour Technol 128:235–240. doi:10.1016/j.biortech.2012.10.056

    Article  CAS  Google Scholar 

  • Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol. doi:10.1016/j.biortech.2012.06.012

    Google Scholar 

  • Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ (2012) Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour Technol 111:343–352. doi:10.1016/j.biortech.2012.02.009

    Article  CAS  Google Scholar 

  • Bosma R, Van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153. doi:10.1023/A:1023807011027

    Article  Google Scholar 

  • Bratby J (2016) Coagulation and flocculation in water and wastewater treatment, 3rd edn. IWA Publishing, London, UK

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  • Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K, Posten C (2012) Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour Technol 118:289–295. doi:10.1016/j.biortech.2012.05.020

    Article  CAS  Google Scholar 

  • Chen F, Liu Z, Li D, Liu C, Zheng P, Chen S (2012) Using ammonia for algae harvesting and as nutrient in subsequent cultures. Bioresour Technol 121:298–303. doi:10.1016/j.biortech.2012.06.076

    Article  CAS  Google Scholar 

  • Cheng YL, Juang YC, Liao GY, Ho SH, Yeh KL, Chen CY, Chang JS, Liu JC, Lee DJ (2010) Dispersed ozone flotation of Chlorella vulgaris. Bioresour Technol 101:9092–9096. doi:10.1016/j.biortech.2010.07.016

    Article  CAS  Google Scholar 

  • Cheng YL, Juang YC, Liao GY, Tsai PW, Ho SH, Yeh KL, Chen CY, Chang JS, Liu JC, Chen WM, Lee DJ (2011) Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour Technol 102:82–87. doi:10.1016/j.biortech.2010.04.083

    Article  CAS  Google Scholar 

  • Cho K, Hur S-P, Lee C-H, Ko K, Lee Y-J, Kim K-N, Kim M-S, Chung Y-H, Kim D, Oda T (2016) Bioflocculation of the oceanic microalga Dunaliella salina by the bloom-forming dinoflagellate Heterocapsa circularisquama, and its effect on biodiesel properties of the biomass. Bioresour Technol 202:257–261. doi:10.1016/j.biortech.2015.12.047

    Article  CAS  Google Scholar 

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337. doi:10.1007/s10811-012-9810-8

    Article  CAS  Google Scholar 

  • Dassey AJ, Theegala CS (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 128:241–245. doi:10.1016/j.biortech.2012.10.061

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749. doi:10.1016/j.enconman.2010.06.010

    Article  CAS  Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170. doi:10.1016/j.enconman.2010.06.055

    Article  Google Scholar 

  • Eisentraut A (2010) Sustainable production of second- generation biofules. Int Energy Agency:1–39. doi:10.1787/9789264084247-en

  • Elliott DC (2016) Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Res 13:255–263. doi:10.1016/j.algal.2015.12.002

    Article  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335. doi:10.1038/nature11479

    Article  CAS  Google Scholar 

  • Granados MR, Acien FG, Gomez C, Fernandez-Sevilla JM, Molina Grima E (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110. doi:10.1016/j.biortech.2012.05.018

    Article  CAS  Google Scholar 

  • Guo S-L, Zhao X-Q, Wan C, Huang Z-Y, Yang Y-L, Alam MA, Ho S-H, Bai F-W, Chang J-S (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289. doi:10.1016/j.biortech.2013.01.120

    Article  CAS  Google Scholar 

  • Gupta SK, Kumar M, Guldhe A, Ansari FA, Rawat I, Kanney K, Bux F (2014) Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Convers Manag 85:537–544. doi:10.1016/j.enconman.2014.05.059

    Article  CAS  Google Scholar 

  • Gutzeit G, Lorch D, Weber A, Engels M (2005) Bioflocculent algal- bacterial biomass improves low-cost wastewater treatment. Water Sci 52(12):p9

    Google Scholar 

  • Harith Z, Yusoff F, Mohamed M, Shariff M, Din M, Ariff A (2009) Effect of different flocculants on the flocculation performance of flocculation performance of microalgae, Chaetoceros calcitrans, cells. Afr J Biotechnol 8. doi:10.4314/AJB.V8I21.66083

  • Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42:3435–3445. doi:10.1016/j.watres.2007.10.032

    Article  CAS  Google Scholar 

  • Hu YR, Wang F, Wang SK, Liu CZ, Guo C (2013) Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour Technol 138:387–390. doi:10.1016/j.biortech.2013.04.016

    Article  CAS  Google Scholar 

  • Jakob G, Stephens E, Feller R, Oey M, Hankamer B, Ross IL (2016) Triggered exocytosis of the protozoan Tetrahymena as a source of bioflocculation and a controllable dewatering method for efficient harvest of microalgal cultures. Algal Res 13:148–158. doi:10.1016/j.algal.2015.11.011

    Article  Google Scholar 

  • Jalali R, Ghafourian H, Asef Y, Davarpanah S, Sepehr S (2002) Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater 92:253–262. doi:10.1016/S0304-3894(02)00021-3

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193. doi:10.1016/j.biortech.2010.06.139

    Article  CAS  Google Scholar 

  • Judd S (2008) The status of membrane bioreactor technology. Trends Biotechnol 26:109–116. doi:10.1016/j.tibtech.2007.11.005

    Article  CAS  Google Scholar 

  • Kaushik P, Malik A (2013) Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption. Environ Sci Pollut Res 20:2882–2892. doi:10.1007/s11356-012-1190-8

    Article  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313. doi:10.1016/j.aquaeng.2006.04.001

    Article  Google Scholar 

  • Larkum AWD, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205. doi:10.1016/j.tibtech.2011.11.003

    Article  CAS  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567. doi:10.1007/s10811-008-9391-8

    Article  CAS  Google Scholar 

  • Lee RA, Lavoie J-M (2013) From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3:6–11. doi:10.2527/af.2013-0010

    Article  Google Scholar 

  • Liu JC, Chen YM, Ju YH (1999) Separation of Algal Cells from Water by Column flotation. Sep Sci Technol 34:2259–2272. doi:10.1081/SS-100100771

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150. doi:10.1016/j.biortech.2014.03.130

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390. doi:10.1023/A:1020238520948

    Article  CAS  Google Scholar 

  • Mishra A, Malik A (2014) Metal and dye removal using fungal consortium from mixed waste stream: optimization and validation. Ecol Eng 69:226–231. doi:10.1016/j.ecoleng.2014.04.007

    Article  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. doi:10.1016/S0734-9750(02)00050-2

    Article  CAS  Google Scholar 

  • Nguyen TL, Lee DJ, Chang JS, Liu JC (2013) Effects of ozone and peroxone on algal separation via dispersed air flotation. Colloids Surfaces B Biointerfaces 105:246–250. doi:10.1016/j.colsurfb.2012.12.017

    Article  CAS  Google Scholar 

  • Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, Kwon GS, Yoon BD (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23:1229–1234. doi:10.1023/A:1010577319771

    Article  CAS  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin 3:431–440. doi:10.1002/bbb.159

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25. doi:10.1016/j.biortech.2010.06.035

    Article  CAS  Google Scholar 

  • Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19:1–10. doi:10.1016/S0921-3449(96)01156-1

    Article  Google Scholar 

  • Prajapati SK, Choudhary P, Malik A, Vijay VK (2014a) Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresour Technol 167:260–268. doi:10.1016/j.biortech.2014.06.038

    Article  CAS  Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013a) Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresour Technol 135:232–238. doi:10.1016/j.biortech.2012.08.069

    Article  CAS  Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013b) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425. doi:10.1016/j.biotechadv.2013.06.005

    Article  CAS  Google Scholar 

  • Prajapati SK, Kumar P, Malik A, Choudhary P (2014b) Exploring pellet forming filamentous fungi as tool for harvesting non-flocculating unicellular microalgae. Bioenergy Res 7:1430–1440. doi:10.1007/s12155-014-9481-1

    Article  CAS  Google Scholar 

  • Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloids Surf B Biointerfaces 112:213–218. doi:10.1016/j.colsurfb.2013.07.053

    Article  CAS  Google Scholar 

  • Renault F, Sancey B, Badot P, Crini G (2009) Chitosan for coagulation/flocculation processes – an eco-friendly approach. Eur Polym J 45:1337–1348. doi:10.1016/j.eurpolymj.2008.12.027

    Article  CAS  Google Scholar 

  • Rickman M, Pellegrino J, Davis R (2012) Fouling phenomena during membrane filtration of microalgae. J Membr Sci 423-424:33–42. doi:10.1016/j.memsci.2012.07.013

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Barsanti L, Rosati G, Tredici MR (2003) Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng 20:243–248. doi:10.1016/S1389-0344(03)00063-7

    Article  CAS  Google Scholar 

  • Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855. doi:10.1007/s10811-010-9591-x

    Article  Google Scholar 

  • Shen H, Niu Y, Xie P, Tao M, Yang X (2011) Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw Biol 56:1065–1080. doi:10.1111/j.1365-2427.2010.02551.x

    Article  CAS  Google Scholar 

  • Åžirin S, Trobajo R, Ibanez C, Salvadó J (2012) Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 24:1067–1080. doi:10.1007/s10811-011-9736-6

    Article  Google Scholar 

  • Sun X, Wang C, Tong Y, Wang W, Wei J (2013) A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Res 2:437–444. doi:10.1016/j.algal.2013.08.004

    Article  Google Scholar 

  • Teixeira CMLL, Kirsten FV, Teixeira PCN (2012) Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol 24:557–563. doi:10.1007/s10811-011-9773-1

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:15. doi:10.1063/1.3294480

    Article  Google Scholar 

  • Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119. doi:10.1016/j.biortech.2011.11.105

    Article  CAS  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530. doi:10.1007/s10811-009-9488-8

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239. doi:10.1016/j.tibtech.2012.12.005

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2008) Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour Technol 99:750–762. doi:10.1016/j.biortech.2007.01.042

    Article  CAS  Google Scholar 

  • Wan C, Zhao X-Q, Guo S-L, Asraful Alam M, Bai F-W (2013) Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresour Technol 135:207–212. doi:10.1016/j.biortech.2012.10.004

    Article  CAS  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20. doi:10.1016/j.jtice.2008.07.007

    Article  CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122. doi:10.1061/(ASCE)EE.1943-7870.0000129

    Article  CAS  Google Scholar 

  • Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS, Mouradov A (2014) Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS One 9:e113497. doi:10.1371/journal.pone.0113497

    Article  Google Scholar 

  • Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502. doi:10.1016/j.biortech.2012.01.101

    Article  CAS  Google Scholar 

  • Wyatt NB, Gloe LM, Brady PV, Hewson JC, Grillet AM, Hankins MG, Pohl PI (2012) Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng 109:493–501. doi:10.1002/bit.23319

    Article  CAS  Google Scholar 

  • Xie S, Sun S, Dai SY, Yuan JS (2013) Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res Biofuels Bioprod 2:28–33. doi:10.1016/j.algal.2012.11.004

    Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102:10047–10051. doi:10.1016/j.biortech.2011.08.021

    Article  CAS  Google Scholar 

  • Xu L, Wang F, Li HZ, Hu ZM, Guo C, Liu CZ (2010) Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. J Chem Technol Biotechnol 85:1504–1507. doi:10.1002/jctb.2457

    CAS  Google Scholar 

  • Xu Y, Purton S, Baganz F (2013) Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour Technol 129:296–301. doi:10.1016/j.biortech.2012.11.068

    Article  CAS  Google Scholar 

  • Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol 114:529–535. doi:10.1016/j.biortech.2012.03.054

    Article  CAS  Google Scholar 

  • Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y (2010) Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol 101:5297–5304. doi:10.1016/j.biortech.2010.02.007

    Article  CAS  Google Scholar 

  • Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H (2012) Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol 112:212–220. doi:10.1016/j.biortech.2012.02.086

    Article  CAS  Google Scholar 

  • Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228. doi:10.1007/s12010-012-9667-y

    Article  CAS  Google Scholar 

  • Zou H, Pan G, Chen H, Yuan X (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environ Pollut 141:201–205. doi:10.1016/j.envpol.2005.08.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (SB/S3/CEE/0002/2014) is gratefully acknowledged. AB acknowledges Council for Scientific and Industrial Research (CSIR) for fellowship (09/086(1193)/2014-EMR I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anushree Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mathur, M., Bhattacharya, A., Malik, A. (2017). Advancements in Algal Harvesting Techniques for Biofuel Production. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_11

Download citation

Publish with us

Policies and ethics