Skip to main content

Microwave Effects on DNA

  • Chapter
  • First Online:
Microwave Effects on DNA and Proteins

Abstract

The effects of nonionizing electromagnetic radiations on biological system is a vexed issue. Despite the fact that a large number of publications have appeared on the subject, the issue is far from settled. In the present work the data showing a distinct possibility in the mechanism of EMF biointeraction leading to DNA strand break is presented. This may have effects on physiology of humans, besides causing genetic damage. A confirmation to this lies in adopting safety criteria by various countries including India. However a quantitative picture still remains to be drawn. In support of this experimental data are summarized to take a holistic view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J (2007) Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril 89:124

    Article  PubMed  Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walters, P. (2002). Molecular biology of the cell, 4th edn.. Garland Science, New York/London, ISBN 0–8153–3218-1. OCLC 145080076 48122761 57023651 69932405

    Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atamna H, Cheung I, Ames BH (2000) A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. Proc Natl Acad Sci U S A 97:686–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad H, Halawa F, Mostafa T, Atta H (2006) Melatonin hormone profile in infertile males. Int J Androl 29:409–413

    Article  CAS  PubMed  Google Scholar 

  • Behari J (2009) Biophysical bone behavior principles and applications. John Willey & Sons (Asia) PTE LTD, Singapore

    Book  Google Scholar 

  • Berg J, Tymoczko J, Stryer L (2002) Biochemistry, W. H. Freeman and Company, New York, ISBN 0–7167–4955-6

    Google Scholar 

  • Bickmore W, Craig J (1997) Chromosome bands: patterns in the genome. Springer, Heidelberg

    Google Scholar 

  • Bijur GN, Briggs B, Hitchcock CL, Williams MV (1999) Ascorbic acid-dehydroascorbate induces cell cycle arrest at G2/M DNA damage checkpoint during oxidative stress. Environ Mol Mutagen 33:144–152

    Article  CAS  PubMed  Google Scholar 

  • Brand KA, Hermfiess U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395

    CAS  PubMed  Google Scholar 

  • Brusick D, Albertini R, McRee D, Peterson D, Williams G, Hanawalt P, Preston J (1998) Genotoxicity of radio frequency radiation DNA/Genetox Expert Panel. Environ Mol Mutagen 32:1–16

    Article  CAS  PubMed  Google Scholar 

  • Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1(9). http://www.molecular-cancer.com/content/pdf/1476-4598-1-9.pdf

  • Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Article  CAS  PubMed  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G>T and A>C substitutions. J Biol Chem 267(1):166–172

    CAS  PubMed  Google Scholar 

  • Cleary SF (1990) Biological effects of radiofrequency electromagnetic fields. In: Gandhi OP (ed) Biological effects and medical applications of electoromagnetic energy. Prentice Hall, Englewood Cliffs, pp 236–255

    Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutations and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Cope FW (1976) Superconductivity--a possible mechanism for non-thermal biological effects of microwaves. J Microw Power 11(3):267–270

    Article  CAS  PubMed  Google Scholar 

  • Copeland WC, Wachsman JT, Johnson FM, Penta JS (2002) Mitochondrial DNA alterations in cancer. Cancer Investig 20(4):557–569

    Article  CAS  Google Scholar 

  • Cremer C, Münkel CH, Granzow M, Jauch A, Dietzel S, Eils R, Guan X-Y, Meltzer PS, Trent JM, Langowski J, Cremer T (1996) Nuclear architecture and the induction of chromosomal aberrations. Mutat Res 366:97–116

    Article  CAS  PubMed  Google Scholar 

  • Dasdag S, Bilgin HM, Akdag MZ, Celik H, Aksen F (2008) Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats. Biotechnol Biotechnol Equip 22:992–997

    Article  Google Scholar 

  • De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4:6446

    Article  CAS  Google Scholar 

  • Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger HW (2005) Non-thermal DNA breakage by mobile phone radiation (1,800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 583:178–183

    Article  CAS  PubMed  Google Scholar 

  • Druzhyna NM, Wilson GL, LeDoux SP (2008) Mitochondrial DNA repair in aging and disease. Mech Ageing Dev 129(7–8):383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunphy WG, Brizuela L, Beach D, Newport J (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regular of mitosis. Cell 54:423–431

    Article  CAS  PubMed  Google Scholar 

  • Eltiti S, Wallace D, Zougkou K, Russo R, Joseph S, Rasor P, Fox E (2007) Development and evaluation of the electromagnetic hypersensitivity questionnaire. Bioelectromagnetics 28:137–151

    Article  PubMed  Google Scholar 

  • Eveson RW, Timmel CR, Brocklehurst B, Hore PJ, McLauchlan KA (2000) The effects of weak magnetic fields on radical recombination reactions in micelles. Int J Radiat Biol 76:1509–1522

    Article  CAS  PubMed  Google Scholar 

  • Fejes I, Zavaczki Z, Szollosi J, Zavaczki Z, Pal A (2005) Is there a relationship between cell phone use and semen quality? Arch Androl 51:385

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Friedrich Miescher (1869). DNA with associated proteins, from cell nuclei. http://www.dnaftb.org/15/bio.html

  • Fujikawa H, Ushioda H, Kudo Y (1992) Kinetics of Escherichia coli destruction by microwave irradiation. Appl Environ Microbiol 58:920–924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garaj-Vrhovac V, Horvat D, Koren Z (1991) The relationship between colony forming ability, chromosome aberrations and incidence of micronuclei in V70 Chinese hamster cells exposed to microwave radiation. Mutat Res 263:143–149

    Article  CAS  PubMed  Google Scholar 

  • Garaj-Vrhrovac V et al (1999) Micronucleus assay and lymphocyte mitotic activity in risk assessment of occupational exposure to microwave radiation. Chemosphere 39(13):2301–2312

    Article  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  • Gautier J, Norbury C, Lohka M, Nuese P, Mailer J (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2. Cell 54:433–439

    Article  CAS  PubMed  Google Scholar 

  • Giwercman A, Richthoff J, Hjollund H, Bonde JP, Jepson K, Frohm B, Spano M (2003) Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil Steril 80:1404

    Article  PubMed  Google Scholar 

  • Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A et al (2006) The DNA sequence and biological annotation of human chromosome 1. Nature 441(7091):315–321

    Article  CAS  PubMed  Google Scholar 

  • Halgamuge MN (2013) Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits. Radiat Prot Dosim 154:405–416

    Article  CAS  Google Scholar 

  • Hanks SK, Hunter T (1995) The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  • Hardeland R, Reiter RJ, Poeggeler B, Tan DX (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17:347–357

    Article  CAS  PubMed  Google Scholar 

  • Hardell L, Mild KH, Carlberg M (2003) Further aspects on cellular and cordless telephones and brain tumors. Int J Oncol 22:399–407

    PubMed  Google Scholar 

  • Harvey C, French PW (2000) Effects on protein kinase C and gene expression in a human mast cell line, HMC-1, following microwave exposure. Cell Biol Int 23:739

    Article  CAS  PubMed  Google Scholar 

  • Havas M (2004) Biological effects of low frequency electric and magnetic fields. In: Clements-Croome D (ed) Electromagnetism and health. Taylor & Francis Publication, London, p 25

    Google Scholar 

  • Hruszkewycz AM, Bergtold DS (1988) Oxygen radicals, lipid peroxidation and DNA damage in mitochondria. Basic Life Sci 49:449–456

    CAS  PubMed  Google Scholar 

  • Hunter T, Plowman GD (1997) The protein kinase of budding yeast: six score and more. Trends Biochem Sci 22:18–22

    Article  CAS  PubMed  Google Scholar 

  • ICNIRP Report (2004) Epidemiology of health effects of radiofrequency. Environ Health Perspect 112(17):1741–1754

    Article  Google Scholar 

  • Iliakis G (1991) The role of DNA double strand breaks in ionizing radiation induced killing of eukaryotic cells. Bio Essays 13:641–648

    CAS  Google Scholar 

  • Irobalieva, R. N., Fogg, J. M. Catanese Jr, D. J., Sutthibutpong, T, Chen, M, Barker, A. K., Ludtke, S. J., Harris, S. A., Schmid, M. F. (2015). Structural diversity of supercoiled DNA. Nat Commun, 6:8440. doi:10.1038/ncomms9440. PMC 4608029. PMID 26455586

  • IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (2006) Abbreviations and symbols for nucleic acids, polynucleotides and their constituents. Eur J Biochem. Retrieved 3 January 2006

    Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen Y, Van Houten B, Borm P, Mossman B (1993) Biology of disease. Cell and tissue responses to oxidative damage. Lab Investig 69:261–274

    CAS  PubMed  Google Scholar 

  • Jayanand, Behari J (2005) Proceedings of International Union of Radio Science (URSI) held in October 13–16, New Delhi

    Google Scholar 

  • Jeng DKH, Kaczmarek KA, Woodworth AG, Balasky G (1987) Mechanism of microwave sterilization in the dry state. Appl Environ Microbiol 53:2133–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung T, Moor RM, Fulka J (1993) Kinetics of MPF and histone H1 kinase activity differ during the G2- to M-phase transition in mouse oocytes. Int J Dev Biol 37:595–600

    CAS  PubMed  Google Scholar 

  • Kakita Y, Kashige N, Murata K, Kuroiwa A, Funatsu M, Watanabe K (1995) Inactivation of Lactobacillus bacteriophage PL-1 by microwave irradiation. Microbiol Immunol 39:571–576

    Article  CAS  PubMed  Google Scholar 

  • Karasek M (2006) Melatonin in human physiology and pathology. In: Columbus F (ed) Frontiers in chronobiology research. Nova Science Publication, Haupage, pp 1–43

    Google Scholar 

  • Kesari KK, Behari J (2008) Comparative study of 900 MHz and 2.45 GHz radiation effect on reproductive system of male rats. In: Sharma RS, Rajanna A, Rajalakshmi M (eds) Recent advances and challenges in reproductive health research. ICMR Publication, New Delhi, p 363

    Google Scholar 

  • Kesari KK, Behari J (2009) Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl Biochem Biotechnol 158:126

    Article  CAS  PubMed  Google Scholar 

  • Kesari KK, Behari J (2010) Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicol Environ Chem 92:1135–1147

    Article  CAS  Google Scholar 

  • Kesari KK, Kumar S, Behari J (2010) Mobile phone usage and male infertility in Wistar rats. Indian J Exp Biol 48:987–992

    CAS  PubMed  Google Scholar 

  • Kesari KK, Kumar S, Behari J (2011) Effects of radiofrequency electromagnetic waves exposure from cellular phone on reproductive pattern in male Wistar rats. Appl Biochem Biotechnol 164:546–559

    Article  CAS  PubMed  Google Scholar 

  • Kilgallon SJ, Simmons LW (2005) Image content influences men’s semen quality. Biol Lett 1:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingma PS, Osheroff N (1997) Spontaneous DNA damage stimulates topoisomerase II-mediated DNA cleavage. J Biol Chem 272:7488–7493

    Article  CAS  PubMed  Google Scholar 

  • Kremer H (2002) Die stille Revolution der Krebs- und Aidsmedizin. Ehlers Verlag, Wolfratshausen

    Google Scholar 

  • Kreth G, Münkel C, Langowski J, Cremer T, Cremer C (1998) Chromatin structure and chromosome aberrations: modelling of damage induced by isotropic and localized irradiation. Mutat Res 404:77–88

    Article  CAS  PubMed  Google Scholar 

  • Kuklinski B, van Lunteren I (2005) Neue Chancen zur naturlichen Vorbeugung und Behandlung von umweltbedingten Krankheiten. J. Kamphausen Verlag, Bielefeld

    Google Scholar 

  • Kula B, Sobczak A, Kuska R (2000) Effects of static and EMF magnetic fields on free-radical processes in rat liver and kidney. Electromagn Biol Med 19:99–105

    CAS  Google Scholar 

  • Kula B, Sobczak A, Kuska R (2002) Effects of electromagnetic field on free-radical processes in steelworker. Part I: magnetic field influence on the antioxidant activity in red blood cells and plasma. J Occup Health 44:226–229

    Article  CAS  Google Scholar 

  • Kuster N, Balzano Q, Lin JC (1997) Mobile communications safety. Chapman & Hall, London, p 23

    Google Scholar 

  • Labbe JC, Capony JP, Caput D, Cavadore JC, Derancourt J, Kaghad M et al (1989) MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J 8:3053–3058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai H, Singh NP (1995) Acute low intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16:207–210

    Article  CAS  PubMed  Google Scholar 

  • Lai H, Singh NP (1996) Single and double strand breaks in rats brain cells after acute exposure to radio frequency electromagnetic radiation. Int J Radiat Biol 69:513–521

    Article  CAS  PubMed  Google Scholar 

  • Lai H, Singh NP (1997) Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation induced DNA strand breaks in rat brain cells. Bioelectromagnetics 18:446

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Ahn SS, Jung KC, Kim YW, Lee SK (2004) Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice. Asian J Androl 6:29

    PubMed  Google Scholar 

  • Lehmann AR, Fuchs RP (2006) Gaps and forks in DNA replication: rediscovering old models. DNA Repair (Amst) 5:1495–1498

    Article  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  • Maes A, Verschaeve L, Arroyo A, De Wagter D, Vercruyssen L (1993) In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics 14:495–501

    Article  CAS  PubMed  Google Scholar 

  • Maes A, Collier M, Slaets D, Verschaeve L (1995) Cytogenetic effects of microwaves from mobile communication frequencies (954 MHz). Electro- Magnetobiol 14:91–98

    Article  Google Scholar 

  • Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117:1495–1502

    Article  CAS  PubMed  Google Scholar 

  • Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R (2009) Radiofrequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics 64:561–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Malpaux B, Migaud M, Tricoier H, Chemineau P (2001) Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J Biol Rhythm 16:336–347

    Article  CAS  Google Scholar 

  • Malyapa RS, Ahern EW, Chen BI, Straube WL, LaRegina M, Pickard WF, Roti Roti JL (1998) DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res 149:637–645

    Article  CAS  PubMed  Google Scholar 

  • Mandelkern M, Elias JG, Eden D, Crothers DM (1981) The dimensions of DNA in solution. J Mol Biol 152(1):153–161

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Mashaghi A, Katan A (2013) A physicist’s view of DNA. De Physicus 24e(3):59–61

    Google Scholar 

  • McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meikrantz W, Schlegel RA (1992) M-phase-promoting factor activation. J Cell Sci 101:475–481

    CAS  PubMed  Google Scholar 

  • Moulder JE, Erdreich LS, Malyapa RS, Merritt J, Pickard WF, Vijayalaxmi (1999) Cell phones and cancer: what is the evidence for connection? Radiat Res 151:513–531

    Article  CAS  PubMed  Google Scholar 

  • Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM (2005) Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J 19:1686–1688

    CAS  PubMed  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Article  CAS  PubMed  Google Scholar 

  • Ohkusu K, Isobe K, Hidaka H, Nakashima I (1986) Elucidation of the protein ki nase C-dependent apoptosis pathway in distinct of T lymphocytes in MRL-lpr/lpr mice. Eur J Immunol 25:3180

    Article  Google Scholar 

  • Paulraj R, Behari J (2002) The effect of low level continuous 2.45 GHz wave on brain enzymes of developing rat brain. Electro-Magn Biol Med 21(3):231–241

    Google Scholar 

  • Paulraj R, Behari J (2004) Radio frequency radiation effects on protein kinase C activity in rats brain. Mutat Res 545:127–130

    Article  CAS  PubMed  Google Scholar 

  • Paulraj R, Behari J (2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res 596:76–80

    Article  CAS  PubMed  Google Scholar 

  • Pawse AR, Margery GO, Stocken LA (1971) Histone kinase and cell division. Biochem J 122:713–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer P, Goedecke W, Obe G (2000) Mechanisms of DNA doublestrand break repair and their potential to induce chromosomal aberrations. Mutagenesis 15:289–302

    Article  CAS  PubMed  Google Scholar 

  • Phillips JL, Ivaschuk O, Ishida-Jones T, Jones RA, Campbell-Beachler M, Haggren W (1998) DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochem Bioenerg 45:103–110

    Article  CAS  Google Scholar 

  • Rao KS (1993) Genomic damage and its repair in young and aging brain. Mol Neurobiol 7(23):23–48

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1993) Interactions of the pineal hormone melatonin with oxygen centered free radicals: a brief review. Braz J Med Biol Res 26:1141–1155

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Robinson J (1995) Melatonin: your body’s natural wonder drug. Bantam Publication, New York

    Google Scholar 

  • Reiter RJ, Tan DX, Cabrera J, D’Arpa D, Sainz RM, Mayo JC, Ramos S (1999) The oxidant/antioxidant network: role of melatonin. Biol Signals Recept 8:56–63

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci 7:444–458

    Article  CAS  PubMed  Google Scholar 

  • Rotem R, Paz GF, Homonnai ZT, Kalina M, Naor Z (1990a) Protein kinase C is present in human sperm: possible role in flagellar motility. Proc Natl Acad Sci U S A 87:7305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotem R, Paz GF, Homonnai ZT, Kalina M, Naor Z (1990b) Further studies on the involvement of protein kinase C in human sperm flagellar motility. Endocrinology 127:2571

    Article  CAS  PubMed  Google Scholar 

  • Russell P (2001) iGenetics. Benjamin Cummings, New York. ISBN 0-8053-4553-1

    Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer, New York. ISBN 0-387-90762-9

    Google Scholar 

  • Sarkar S, Ali S, Behari J (1994) Effect of low power microwave on the mouse genome: a direct DNA analysis. Mutat Res 320:141–147

    Article  CAS  PubMed  Google Scholar 

  • Savage JRK (1996) Insight into sites. Mutat Res 366:81–95

    Article  CAS  PubMed  Google Scholar 

  • Shang X, Huang Y, Ye Z, Yu X, Gu W (2004) Protection of melatonin against damage of sperm mitochondrial function induced by reactive oxygen species. Zhonghua Nan Ke Xue 10:604–607

    CAS  PubMed  Google Scholar 

  • Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434

    Article  CAS  PubMed  Google Scholar 

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17:598–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speit G, Schütz P, Hoffmann H (2007) Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) are not independently reproducible. Mutat Res 626:42–47

    Article  CAS  PubMed  Google Scholar 

  • Stevens RG, Davis S (1996) The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 104:135–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopczyk D, Gnitecki W, Buczynski A, Kowalski W, Markuszewski L, Buczynska M (2005) Effect of electromagnetic field produced by mobile phones on the activity of superoxide dismutase (SOD-1) and the level of malonyldialdehyde (MDA)-in vitro study. Med Pr 53:311–314

    Google Scholar 

  • Takabe W, Niki E, Uchida K, Satoh K, Noguchi N (2001) Oxidative stress promotes the development of transformation: involvement of a potent mutagenic lipid peroxidation product, acrolein. Carcinogenesis 22:935–941

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Gabriel C, Sheppard RJ, Grant EH (1984) Dielectric behaviour of DNA solution at radio frequency and microwave frequencies. J Biophys 46:29–34

    Article  CAS  Google Scholar 

  • Thorn T, Gniadecki R, Petersen AB, Vicanova J, Wulf HC (2001) Differences in activation of G2/M checkpoint in keratinocytes after genotoxic stress induced by hydrogen peroxide and ultraviolet radiation. Free Radic Res 35:405–416

    Article  CAS  PubMed  Google Scholar 

  • Trush M, Kensler T (1991) Role of free radicals in carcinogen activation. In: Sies H (Hrsg) Oxidative stress. Oxidants and antioxidants S. Academic Press, London, pp 277–317

    Google Scholar 

  • Vela GR, Wu JF (1979) Mechanism of lethal action of 2450 MHz radiation on microorganisms. Appl Environ Microbiol 37:550–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayalaxmi, Obe G (2004) Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiat Res 162:481–496

    Article  CAS  PubMed  Google Scholar 

  • Vijayalaxmi et al (1997) Frequency of micronuclei in the peripheral blood and bone marrow of cancer-prone mice chronically exposed to 2350 MHz radiofrequency radiation. Radiat Res 147(4):495–500

    Article  CAS  PubMed  Google Scholar 

  • Vijayalaxmi et al (1998) Correction of an error in calculation in the article in. Res Radiat 149(3):199–202

    Article  Google Scholar 

  • Watson JD, Crick FH (1953) A structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  • Weaver VM, Gilbert P (2004) Watch thy neighbor: cancer is a communal affair. J Cell Sci 117:1287–1290

    Article  CAS  PubMed  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolffe A (1998) Chromatin structure and function. Academic, San Diego

    Google Scholar 

  • Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS (2007) Effects of cellular phone emissions on sperm motility in rats. Fertil Steril 88:957

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Tanigawa M, Tanigawa T, Imai A, Hongo H, Kondo M (2000) Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology 7:131–135

    Article  CAS  PubMed  Google Scholar 

  • Zang LY, Cosma G, Gardner H, Vallyathan V (1998) Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta 1425:469–477

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X (2003) Role of reactive oxygen species and MAPKs in vanadate induced G2/M phase arrest. Free Radic Biol Med 34:1333–1342

    Article  CAS  PubMed  Google Scholar 

  • Zmyslony M, Jajte JM (1998b) The role of free radicals in mechanisms of biological function exposed to weak, constant and net magnetic fields. Med Pr 49:177–186

    CAS  PubMed  Google Scholar 

  • Zmyslony M, Jajte JM (1998a) The role of free radicals in mechanisms of biological function exposed to weak, constant and net magnetic fields. Med Pr 49:177–186

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Behari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Behari, J., Jindal, T. (2017). Microwave Effects on DNA. In: Geddes, C. (eds) Microwave Effects on DNA and Proteins. Springer, Cham. https://doi.org/10.1007/978-3-319-50289-2_3

Download citation

Publish with us

Policies and ethics