Skip to main content

Developability Assessment of Clinical Candidates

  • Chapter
  • First Online:
Translating Molecules into Medicines

Abstract

The role of the developability (aka preformulation) scientist at the discovery development interface has been extensively discussed in the literature. In response to shifting trends in discovery and the continued push to shorten timelines and reduce costs, the engagement of the developability scientist on discovery teams has steadily moved upstream over the past two decades. In this new and continually changing role, the developability scientist has the opportunity to influence the selection of chemistry scaffolds entering the lead optimization phase and subsequently the selection of developable compounds for clinical testing. In its current state, developability assessment of clinical candidates is an assessment of the physicochemical and biopharmaceutical properties of the compound, carried out with due consideration to the patient in question, the clinical testing plan, and the commercial landscape. This chapter describes the dynamic and integrated nature of this assessment, along with a description of the in silico, in vitro, and in vivo tools used, and illustrative case studies. Key areas of focus include:

  1. (a)

    Solid form design and selection.

  2. (b)

    Characterization of the physicochemical properties associated with the solid form, such as solubility, stability, and dissolution properties.

  3. (c)

    Absorption modeling, including the definition of clinical product performance criteria and the need (if any) for absorption enhancement.

  4. (d)

    Assessment of absorption enhancement potential using technology platforms that lend themselves to commercial development (including in vivo evaluation where relevant).

  5. (e)

    The assembly of a comprehensive data package that includes an assessment of potential risks to clinical and commercial development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxena V, et al. Developability assessment in pharmaceutical industry: an integrated group approach for selecting developable candidates. J Pharm Sci. 2009;98(6):1962–79.

    Article  CAS  PubMed  Google Scholar 

  2. Steele G. Pharmaceutical Preformulation and Formulation: a practical guide from candidate drug selection to commercial dosage form. New York: Informa Healthcare; 2009.

    Google Scholar 

  3. Venkatesh S, Lipper RA. Role of the development scientist in compound lead selection and optimization. J Pharm Sci. 2000;89(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  4. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  CAS  PubMed  Google Scholar 

  5. Lipinski CA, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3–26.

    Article  CAS  PubMed  Google Scholar 

  6. Woodward RB. The total synthesis of strychnine. Experientia. 1955;(Suppl 2):213–28.

    Google Scholar 

  7. Martin DB, Nguyen LQ, Vanderwal CD. Syntheses of strychnine, norfluorocurarine, dehydrodesacetylretuline, and valparicine enabled by intramolecular cycloadditions of Zincke aldehydes. J Org Chem. 2012;77(1):17–46.

    Article  CAS  PubMed  Google Scholar 

  8. Suresh P, Basu PK. Improving pharmaceutical product development and manufacturing: impact on cost of drug development and cost of goods sold of pharmaceuticals. J Pharm Innov. 2008;3(3)

    Google Scholar 

  9. Bertz SH. The first general index of molecular complexity. J Am Chem Soc. 1981;103(12):3.

    Article  Google Scholar 

  10. Bottcher T. An additive definition of molecular complexity. J Chem Inf Model. 2016;56(3):462–70.

    Article  PubMed  Google Scholar 

  11. Barone R, Chanon M. A new and simple approach to chemical complexity. Application to the synthesis of natural products. J Chem Inf Comput Sci. 2001;41(2):269–72.

    Article  CAS  PubMed  Google Scholar 

  12. Kjell DP, et al. Complexity-based metric for process mass intensity in the pharmaceutical industry. Org Process Res Dev. 2013;17(2):5.

    Article  Google Scholar 

  13. Gaisford S, Saunders M. Essentials of pharmaceutical preformulation. Hoboken, NJ: Wiley-Blackwell; 2012.

    Book  Google Scholar 

  14. Allen RI, et al. Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J Pharm Biomed Anal. 1998;17(4-5):699–712.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou C, et al. Rapid pKa estimation using vacuum-assisted multiplexed capillary electrophoresis (VAMCE) with ultraviolet detection. J Pharm Sci. 2005;94(3):576–89.

    Article  CAS  PubMed  Google Scholar 

  16. Takacs-Novak K, Avdeef A. Interlaboratory study of log P determination by shake-flask and potentiometric methods. J Pharm Biomed Anal. 1996;14(11):1405–13.

    Article  CAS  PubMed  Google Scholar 

  17. Lombardo F, et al. ElogPoct: a tool for lipophilicity determination in drug discovery. J Med Chem. 2000;43(15):2922–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lombardo F, et al. ElogD(oct): a tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds. J Med Chem. 2001;44(15):2490–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hill AP, Young RJ. Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov Today. 2010;15(15–16):648–55.

    Article  CAS  PubMed  Google Scholar 

  20. Friesen DT, et al. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  21. Giron D. Applications of thermal analysis in the pharmaceutical industry. J Pharm Biomed Anal. 1986;4(6):755–70.

    Article  CAS  PubMed  Google Scholar 

  22. Avdeef A. Solubility of sparingly-soluble ionizable drugs. Adv Drug Deliv Rev. 2007;59(7):568–90.

    Article  CAS  PubMed  Google Scholar 

  23. Elder D, Holm R. Aqueous solubility: simple predictive methods (in silico, in vitro and bio-relevant approaches). Int J Pharm. 2013;453(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  24. Morrison JS, Nophsker MJ, Haskell RJ. A combination turbidity and supernatant microplate assay to rank-order the supersaturation limits of early drug candidates. J Pharm Sci. 2014;103(10):3022–32.

    Article  CAS  PubMed  Google Scholar 

  25. Andersson T, Broo A, Evertsson E. Prediction of drug candidates' sensitivity toward autoxidation: computational estimation of C-H dissociation energies of carbon-centered radicals. J Pharm Sci. 2014;103(7):1949–55.

    Article  CAS  PubMed  Google Scholar 

  26. Lienard P, et al. Predicting drug substances autoxidation. Pharm Res. 2015;32(1):300–10.

    Article  CAS  PubMed  Google Scholar 

  27. Kieffer J, et al. In silico assessment of drug substances chemical stability. J Mol Struct (THEOCHEM). 2010;954(1-3):75–9.

    Article  CAS  Google Scholar 

  28. Brittain, HG, Polymorphism in Pharmaceutical Solids. Informa Healthcare. 2009.

    Google Scholar 

  29. Huang LF, Tong WQ. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev. 2004;56(3):321–34.

    Article  CAS  PubMed  Google Scholar 

  30. Brittain HG, et al. Physical characterization of pharmaceutical solids. Pharm Res. 1991;8(8):963–73.

    Article  CAS  PubMed  Google Scholar 

  31. Yu LX, et al. Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications. Pharm Res. 2003;20(4):531–6.

    Article  CAS  PubMed  Google Scholar 

  32. Bauer J, et al. Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res. 2001;18(6):859–66.

    Article  CAS  PubMed  Google Scholar 

  33. Hentzschel CM, Sakmann A, Leopold CS. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev Ind Pharm. 2011;37(10):1200–7.

    Article  CAS  PubMed  Google Scholar 

  34. Van Speybroeck M, et al. Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs. J Pharm Sci. 2009;98(8):2648–58.

    Article  PubMed  Google Scholar 

  35. Johnson KC, Swindell AC. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm Res. 1996;13(12):1795–8.

    Article  CAS  PubMed  Google Scholar 

  36. Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–16.

    Article  CAS  PubMed  Google Scholar 

  37. Elder DP, Holm R, Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm. 2013;453(1):88–100.

    Article  CAS  PubMed  Google Scholar 

  38. Li S, et al. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res. 2005;22(4):628–35.

    Article  CAS  PubMed  Google Scholar 

  39. Zannou EA, et al. Stabilization of the maleate salt of a basic drug by adjustment of microenvironmental pH in solid dosage form. Int J Pharm. 2007;337(1-2):210–8.

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh YL, et al. Salt stability - the effect of phmax on salt to free base conversion. Pharm Res. 2015;32(9):3110–8.

    Article  CAS  PubMed  Google Scholar 

  41. Stephenson GA, Aburub A, Woods TA. Physical stability of salts of weak bases in the solid-state. J Pharm Sci. 2011;100(5):1607–17.

    Article  CAS  PubMed  Google Scholar 

  42. Rohrs BR, et al. Tablet dissolution affected by a moisture mediated solid-state interaction between drug and disintegrant. Pharm Res. 1999;16(12):1850–6.

    Article  CAS  PubMed  Google Scholar 

  43. Cosmetic Ingredient Review Expert Panel. Final report on the safety assessment of maleic acid. Int J Toxicol. 2007;26(Suppl 2):125–30.

    Google Scholar 

  44. Bhatt PM, et al. Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chem Commun. 2005;8:1073–5.

    Article  Google Scholar 

  45. Bak A, et al. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J Pharm Sci. 2008;97(9):3942–56.

    Article  CAS  PubMed  Google Scholar 

  46. Williams HD, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  Google Scholar 

  47. Brittain HG. Cocrystal systems of pharmaceutical interest: 2009. Profiles Drug Subst Excip Relat Methodol. 2011;36:361–81.

    Article  CAS  PubMed  Google Scholar 

  48. FDA. Guidance for industry: regulatory classification of pharmaceutical co-crystals. In: FDA, editor. 2011.

    Google Scholar 

  49. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  50. Bevernage J, et al. Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm. 2013;453(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  51. Brewster ME, et al. Comparative interaction of 2-hydroxypropyl-beta-cyclodextrin and sulfobutylether-beta-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci. 2008;34(2-3):94–103.

    Article  CAS  PubMed  Google Scholar 

  52. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23-24):1068–75.

    Article  CAS  PubMed  Google Scholar 

  53. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  54. Engers D, et al. A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion. J Pharm Sci. 2010;99(9):3901–22.

    Article  CAS  PubMed  Google Scholar 

  55. Dinunzio JC, et al. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51.

    Article  CAS  PubMed  Google Scholar 

  56. Gupta J, et al. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B. 2011;115(9):2014–23.

    Article  CAS  PubMed  Google Scholar 

  57. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64(5):396–421.

    Article  CAS  PubMed  Google Scholar 

  58. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.

    Article  CAS  PubMed  Google Scholar 

  59. Kostewicz ES, et al. Forecasting the oral absorption behavior of poorly soluble weak bases using solubility and dissolution studies in biorelevant media. Pharm Res. 2002;19(3):345–9.

    Article  CAS  PubMed  Google Scholar 

  60. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  61. Bard B, Martel S, Carrupt PA. High throughput UV method for the estimation of thermodynamic solubility and the determination of the solubility in biorelevant media. Eur J Pharm Sci. 2008;33(3):230–40.

    Article  CAS  PubMed  Google Scholar 

  62. Jantratid E, et al. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  CAS  PubMed  Google Scholar 

  63. Markopoulos C, et al. In-vitro simulation of luminal conditions for evaluation of performance of oral drug products: choosing the appropriate test media. Eur J Pharm Biopharm. 2015;93:173–82.

    Article  CAS  PubMed  Google Scholar 

  64. Bevernage J, et al. Drug supersaturation in simulated and human intestinal fluids representing different nutritional states. J Pharm Sci. 2010;99(11):4525–34.

    Article  CAS  PubMed  Google Scholar 

  65. Kalantzi L, et al. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):165–76.

    Article  CAS  PubMed  Google Scholar 

  66. Curatolo W. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharmaceut Sci Technol Today. 1998;1(9)

    Google Scholar 

  67. Reppas C, et al. Biorelevant in vitro performance testing of orally administered dosage forms-workshop report. Pharm Res. 2014;31(7):1867–76.

    Article  CAS  PubMed  Google Scholar 

  68. Kostewicz ES, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–66.

    Article  CAS  PubMed  Google Scholar 

  69. Mathias NR, et al. Assessing the risk of pH-dependent absorption for new molecular entities: a novel in vitro dissolution test, physicochemical analysis, and risk assessment strategy. Mol Pharm. 2013;10(11):4063–73.

    Article  CAS  PubMed  Google Scholar 

  70. Carino SR, Sperry DC, Hawley M. Relative bioavailability of three different solid forms of PNU-141659 as determined with the artificial stomach-duodenum model. J Pharm Sci. 2010;99(9):3923–30.

    Article  CAS  PubMed  Google Scholar 

  71. Gao Y, et al. A pH-dilution method for estimation of biorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Mol Pharm. 2010;7(5):1516–26.

    Article  CAS  PubMed  Google Scholar 

  72. Takeuchi S, et al. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution. J Pharm Sci. 2014;103(11):3416–22.

    Article  CAS  PubMed  Google Scholar 

  73. Sjogren E, et al. In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014;57:99–151.

    Article  CAS  PubMed  Google Scholar 

  74. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41–67.

    Article  CAS  PubMed  Google Scholar 

  75. Rohrs BR. Biopharmaceutics modeling and the role of dose and formulation on oral exposure. In: Optimizing the “drug-like” properties of leads in drug discovery. New York: Springer; 2006. p. 151–66.

    Chapter  Google Scholar 

  76. Mithani SD, et al. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 1996;13(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  77. Sugano K. A simulation of oral absorption using classical nucleation theory. Int J Pharm. 2009;378(1-2):142–5.

    Article  CAS  PubMed  Google Scholar 

  78. Kesisoglou F, Xia B, Agrawal NGB. Comparison of deconvolution-based and absorption modeling IVIVC for extended release formulations of a BCS III drug development candidate. AAPS J. 2015;17(6):1492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. González-García I, et al. In vitro–in vivo correlations: general concepts, methodologies and regulatory applications. Drug Dev Ind Pharm. 2015;41(12):1935–47.

    Article  PubMed  Google Scholar 

  80. Carlert S, et al. In vivo dog intestinal precipitation of mebendazole: a basic BCS class II drug. Mol Pharm. 2012;9(10):2903–11.

    Article  CAS  PubMed  Google Scholar 

  81. Bhattachar SN, Bender DM, Sweetana SA, Wesley JA. Discovery formulations: approaches and practices in early preclinical development. In: Discovering and developing molecules with optimal drug-like properties. New York: Springer; 2015.

    Google Scholar 

  82. FDA and Rapamune. http://www.fda.gov/ohrms/dockets/ac/02/briefing/3832b1_03_FDA-RapamuneLabel.htm.

  83. Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  84. Niculescu-Duvaz I, et al. Novel inhibitors of B-RAF based on a disubstituted pyrazine scaffold. Generation of a nanomolar lead. J Med Chem. 2006;49(1):407–16.

    Article  CAS  PubMed  Google Scholar 

  85. Bollag G, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11(11):873–86.

    Article  CAS  PubMed  Google Scholar 

  86. Ravnan MC, Matalka MS. Vemurafenib in patients with BRAF V600E mutation-positive advanced melanoma. Clin Ther. 2012;34(7):1474–86.

    Article  CAS  PubMed  Google Scholar 

  87. Grippo JF, et al. A phase I, randomized, open-label study of the multiple-dose pharmacokinetics of vemurafenib in patients with BRAF V600E mutation-positive metastatic melanoma. Cancer Chemother Pharmacol. 2014;73(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  88. Flaherty KT, Yasothan U, Kirkpatrick P. Vemurafenib. Nat Rev Drug Discov. 2011;10(11):811–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha N. Bhattachar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Bhattachar, S.N., Tan, J.S., Bender, D.M. (2017). Developability Assessment of Clinical Candidates. In: Bhattachar, S., Morrison, J., Mudra, D., Bender, D. (eds) Translating Molecules into Medicines. AAPS Advances in the Pharmaceutical Sciences Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-50042-3_7

Download citation

Publish with us

Policies and ethics