Skip to main content

Existence and Region of Critical Probabilities in Bootstrap Percolation on Inhomogeneous Periodic Trees

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10088))

Included in the following conference series:

  • 463 Accesses

Abstract

Bootstrap percolation is a growth model inspired by cellular automata. At the initial time \(t=0\), the bootstrap percolation process starts from an initial random configuration of active vertices on a given graph, and proceeds deterministically so that a node becomes active at time \(t=1,2,\dots \) if sufficiently many of its neighbors are already active at the previous time \(t-1\). In the most basic model, all vertices have the same initial probability of being active in the initial configuration. One of the main questions is to determine the percolation threshold (if it exists) with the property that all nodes in the given graph become active asymptotically almost surely (a.a.s.) for the initial probability above this threshold, while this is not the case below the threshold. In this work, we study a scenario where the nodes do not all receive the same probabilities, but to keep the problem tractable, we impose conditions on the shape of the graph and the initial probabilities. Specifically, we consider infinite periodic trees, in which the degrees and initial probabilities of nodes on a path from the root node are periodic, with a given periodicity. Instead of the simple percolation threshold, we now obtain an entire region of possible probabilities for which all nodes in the tree become a.a.s. active. We show: (i) that the unit cube, as the support of the initial probabilities, can be partitioned into two regions, denoted by \(W_0\) and \(\overline{W}_0\), such that the tree becomes (does not become) a.a.s. fully active for any initial probability vector that belongs to \(\overline{W}_0\) (resp. \(W_0\)); (ii) for every node in the tree, we provide the probability that the node becomes eventually active, for any initial probability vector that belongs to \(W_0\); (iii) further, we specify the boundary of \(W_0\) and show how it can be numerically computed.

S. Wagner—Supported by the National Research Foundation of South Africa under grant number 96236.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A: Math. Gen. 21(19), 3801–3813 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Comb. 17, 1–20 (2010). #R25

    MathSciNet  MATH  Google Scholar 

  3. Amini, H., Fountoulakis, N.: What I tell you three times is true: bootstrap percolation in small worlds. In: Proceedings of Internet and Network Economics - 8th International Workshop, WINE 2012, Liverpool, UK, 10–12 December 2012, pp. 462–474 (2012)

    Google Scholar 

  4. Amini, H., Fountoulakis, N.: Bootstrap percolation in power-law random graphs. J. Stat. Phys. 155(1), 72–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amini, H., Fountoulakis, N., Panagiotou, K.: Bootstrap percolation in inhomogeneous random graphs. arXiv:1402.2815

  6. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hypercube. Comb. Probab. Comput. 18(1–2), 17–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions. Comb. Probab. Comput. 19(5–6), 643–692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Comb. Probab. Comput. 15(5), 715–730 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biskup, M., Schonmann, R.H.: Metastable behavior for bootstrap percolation on regular trees. J. Stat. Phys. 136(4), 667–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bollobás, B., Gunderson, K., Holmgren, C., Janson, S., Przykucki, M.: Bootstrap percolation on Galton-Watson trees. Electron. J. Probab. 19(13), 1–27 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Bradonjić, M., Saniee, I.: Bootstrap percolation on random geometric graphs. Probab. Eng. Inf. Sci. 28(2), 169–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bradonjić, M., Saniee, I.: Bootstrap percolation on periodic trees. In: Proceedings of 12th Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2015, San Diego, CA, USA, 4 January 2015, pp. 89–96 (2015)

    Google Scholar 

  15. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C 12, L31 (1979)

    Article  Google Scholar 

  16. Duminil-Copin, H., Van Enter, A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Probab. 41(3A), 1218–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fontes, L., Schonmann, R.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132(5), 839–861 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gravner, J., Holroyd, A.E., Morris, R.: A sharper threshold for bootstrap percolation in two dimensions. Probab. Theor. Relat. Fields 153(1–2), 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theor. Relat. Fields 125, 195–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Janson, S., Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(G_{n, p}\). Ann. Appl. Probab 22(5), 1989–2047 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schonmann, R.: Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58(5–6), 1239–1244 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20(1), 174–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Enter, A., Adler, J., Duarte, J.: Finite-size effects for some bootstrap percolation models. J. Stat. Phys. 60(3–4), 323–332 (1990)

    Article  MathSciNet  Google Scholar 

  24. van Enter, A., Fey, A.: Metastability thresholds for anisotropic bootstrap percolation in three dimensions. J. Stat. Phys. 147(1), 97–112 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. van Enter, A., Hulshof, T.: Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections. J. Stat. Phys. 128(6), 1383–1389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Bradonjić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bradonjić, M., Wagner, S. (2016). Existence and Region of Critical Probabilities in Bootstrap Percolation on Inhomogeneous Periodic Trees. In: Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2016. Lecture Notes in Computer Science(), vol 10088. Springer, Cham. https://doi.org/10.1007/978-3-319-49787-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49787-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49786-0

  • Online ISBN: 978-3-319-49787-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics