Skip to main content

Cyanoremediation: A Green-Clean Tool for Decontamination of Synthetic Pesticides from Agro- and Aquatic Ecosystems

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Immense use of synthetic chemicals in agriculture has deleterious effects on the environment even outside agro-ecosystem, microbial biodiversity, water bodies, and on life especially at the end of food chain, including humans. Therefore, there is a need to develop some viable and eco-friendly tools to remove these lethal chemicals from the environment. Bioremediation has been considered as a less-expensive alternative to physical and chemical means to decontaminate and degrade the pesticides from the contaminated sites. A number of microorganisms such as bacteria, fungi, actinomycetes, and cyanobacteria have been reported to degrade the pesticides. However, cyanobacteria (formally known as blue–green algae—BGA), the only known group of prokaryotes, capable of oxygenic photosynthesis and ubiquitous in distribution, have the remarkable ability to survive in harsh environments. Therefore, cyanobacteria could be a potential bioagent in degradation of noxious chemicals including pesticides. As a bioremediating agent, cyanobacteria have some advantages over other microbes in bioremediation, i.e., phototrophic nature makes them self-sufficient in growth, ability to fix nitrogen, and ease in biomass recovery. Some efficient and potential cyanobacterial genera such as Anabaena, Leptolyngbya, Microcystis, Nostoc, Spirulina, and Synechocystis have been found to tolerate and degrade various pesticides and herbicides. Biodegradation capabilities of cyanobacteria can be improved through genetic engineering, which can be exploited as cost-effective and eco-friendly remediation technology. This review focuses on the potential of cyanobacteria in the biodegradation of synthetic chemical residues from agro- and aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah AR, Bajet CM, Matin MA, Nhan DD, Sulaiman AH (1997) Ecotoxicology of pesticides in the tropical paddy field system. Environ Toxicol Chem 16:59–70

    Article  CAS  Google Scholar 

  • Akhtar W, Sengupta D, Chowdhury A (2009) Impact of pesticide use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  Google Scholar 

  • Alavanja MCR et al (2004) Health effects of chronic pesticide exposure – cancer and neurotoxicity. Annu Rev Public Health 25:155–197

    Article  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley Eastern Limited, New Delhi

    Google Scholar 

  • Alexander M (1994) Biodegradation und bioremediation. Academic Press, San Diego, CA

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, London

    Google Scholar 

  • Araujo ASF, Monterio RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

    Article  CAS  Google Scholar 

  • Armstrong RN (1994) Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol Relat Areas Mol Biol 69:1–44

    CAS  Google Scholar 

  • Arunakumara KKIU, Walpola BC, Yoon MH (2013) Metabolism and degradation of glyphosate in aquatic cyanobacteria: a review. Afr J Microbiol Res 7(32):4084–4090

    CAS  Google Scholar 

  • Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria-the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42

    Article  CAS  Google Scholar 

  • Babu GS, Farooq M, Ray RS, Joshi PC, Viswanathan PN, Hans RK (2003) DDT and HCH residues in basmati rice (Oryza sativa) cultivated in Dehradun (India). Water Air Soil Pollut 144:149–157

    Article  Google Scholar 

  • Barcelo D, Hennion MC (1997) Trace determination of pesticides and their degradation products in water. Elsevier, Amsterdam, The Netherlands, p. 3

    Google Scholar 

  • Barton JW, Kurtiz T, O’Connor LE, Ma CY, Maskarinee MP, Davison BH (2004) Reductive transformation of methyl parathion by cyanobacterium Anabaena sp., strain PCC 7120. Appl Microbiol Biotechnol 65:330–335

    Article  CAS  Google Scholar 

  • Bödeker W, Dümmler C (1993) Pestizide und Gesundheit, 2nd edn. Verlag C.F Müller, Karlsruhe

    Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Grant Burgess J, Wright PC (2001) Marine cyanobacteria-a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Burns RG (1975) Factors affecting pesticides loss from soil. In: Paul E A, AD ML (eds) Soil biochemistry, vol 4. Marcel Dekker, Inc., New York, pp 103–141

    Google Scholar 

  • Caceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57(6):643–646

    Article  CAS  Google Scholar 

  • Capone DG, Burns JA, Montoya JP et al (2005) Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem Cycles 19(2):1–17

    Article  CAS  Google Scholar 

  • Chen W, Georgiou G (2002) Cell-surface display of heterologous proteins: from high throughput screening to environmental applications. Biotechnol Bioeng 5:496–503

    Article  CAS  Google Scholar 

  • Codd GA (1987) Immobilized micro-algae and cyanobacteria. Br Phycol Soc Newsl 24:1–5

    Google Scholar 

  • Cohen Y (2001) Biofiltration-the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol 77:257–274

    Article  CAS  Google Scholar 

  • Cork DJ, Krueger JP (1991) Microbial transformations of herbicides and pesticides. Adv Appl Microbiol 36:1–66

    Article  CAS  Google Scholar 

  • De-Bashan LE, Yoav Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • Doggett SM, Rhodes RG (1991) Effects of a diazinon formulations on unialgal growth rates and phytoplankton diversity. Bull Environ Contam Toxicol 47:36–42

    Article  CAS  Google Scholar 

  • Dong G, Golden SS (2008) How a cyanobacterium tells time. Curr Opin Microbiol 11:541–546

    Article  CAS  Google Scholar 

  • Drum C (1980) Soil chemistry of pesticides. PPG Industries, Inc., Pittsburgh, PA

    Google Scholar 

  • Dyhrman ST, Chapell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71

    Article  CAS  Google Scholar 

  • El-Bestawy EA, Abd El-Salam AZ, Mansy AERH (2007) Potential use of environmental cyanobacterial species in bioremediation on lindane-contaminated effluents. Int Biodeter Biodegr 59:180–192

    Article  CAS  Google Scholar 

  • El-Nahhal Y, Awad Y, Safi J (2013) Bioremediation of acetochlor in soil and water systems by cyanobacterial Mat. Int J Geosci 4:880–890

    Article  CAS  Google Scholar 

  • EPA, 2012. What is a pesticide? http://www.epa.gov/opp00001/about/.

    Google Scholar 

  • FAO (1989) International code of conduct on the distribution and use of pesticides, Rome.

    Google Scholar 

  • Forget G (1993) Balancing the need for pesticides with the risk to human health. In: Forget G, Goodman T, de Villiers A (eds) Impact of pesticide use on health in developing countries. IDRC, Ottawa, p 2

    Google Scholar 

  • Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical basis for a wide spread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456

    Article  CAS  Google Scholar 

  • Freedman B (1995) Environmental ecology. Academic Press, New York

    Google Scholar 

  • Gimsing AL, Borggaard OK, Jacobsen OS, Sørensen AJ (2004) Chemical and microbiological soil characteristics controlling glyphosate mineralization in Danish surface soils. Appl Soil Ecol 27:233–242

    Article  Google Scholar 

  • Glotfelty DE, Schomburg CJ (1989) Volatilization of pesticides from soil. In: Sawhney BL, Brown K, Madison WI (eds) Reactions and movements of organic chemicals in soil. Soil Science Society of America Special Publication, Madison, WI, p 181

    Google Scholar 

  • González R, García-Balboa C, Rouco M, Lopez-Rodas V, Costas E (2012) Adaptation of microalgae to lindane: a new approach for bioremediation. Aquat Toxicol 109:25–32

    Article  CAS  Google Scholar 

  • Ha J, Engler CR, Lee SJ (2008) Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads. Biotechnol Bioeng 100(4):698–706

    Article  CAS  Google Scholar 

  • Ha J, Engler CR, Wild J (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100:1138–1142

    Article  CAS  Google Scholar 

  • Habib K, Kumar S, Manikar N, Zutshi S, Fatma T (2011) Biochemical effect of carbaryl on oxidative stress, antioxidant enzymes and osmolytes of cyanobacterium Calothrix brevissima. Bull Environ Contam Toxicol 87:615–620

    Article  CAS  Google Scholar 

  • Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631

    Article  CAS  Google Scholar 

  • Hatzios KK (1991) Biotransformation of herbicides in higher plants. In: Grover R, Cessna AJ (eds) Environmental chemistry of herbicides. CRC Press, Boca Raton, FL, pp 141–185

    Google Scholar 

  • Hedges SB, Chen H, Kumar S, Wang DY, Thompson AS, Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1(4):1–10

    Google Scholar 

  • Hicks RJ, Stotzky G, Voris PV (1990) Review and evaluation of the effects of xenobiotic chemical on microorganisms in soil. Adv Appl Microbiol 35:195–253

    Article  CAS  Google Scholar 

  • Hirooka T, Nagase H, Hirata K, Miyamoto K (2006) Degradation of 2,4-dinitrophenol by a mixed culture of photoautotrophic microorganisms. Biochem Eng J 29:157–162

    Article  CAS  Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed Res Int. Article ID 392682

    Google Scholar 

  • Igbedioh SO (1991) Effects of agricultural pesticides on humans, animals and higher plants in developing countries. Arch Environ Health 46:218

    Article  CAS  Google Scholar 

  • Jha MN, Mishra SK (2005) Biological responses of cyanobacteria to insecticides and their insecticide degrading potential. Bull Environ Contam Toxicol 75(2):374–381

    Article  CAS  Google Scholar 

  • Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152:1598–1610

    Article  CAS  Google Scholar 

  • Kanekar PP, Bhadbhade BJ, Deshpande NM, Sarnaik SS (2004) Biodegradation of organophosphorous pesticides. Proc Indian Natl Sci Acad B 70(1):57–70

    CAS  Google Scholar 

  • Kennedy IR, Sanchez-Bayo F, Kimber SW, Hugo L, Ahmad N (2001) Off-site movement of endosulfan from irrigated cotton in New South Wales. J Environ Qual 30:683–696

    Article  CAS  Google Scholar 

  • Khasdan V, Ben-Dov E, Manasherob R, Boussiba S, Zaritsky A (2003) Mosquito larvicidal activity of transgenic Anabaena PCC 7120 expressing toxin genes from Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 227:189–195

    Article  CAS  Google Scholar 

  • Kodama T, Kuwatsuka S (1980) Factors for the persistence of parathion, methyl parathion and fenitrothion in seawater. J Pestic Sci 5:351–355

    Article  CAS  Google Scholar 

  • Kole RK, Bagchi MM (1995) Pesticide residues in the aquatic environment and their possible ecological hazards. J Inland Fish Soc India 27(2):79–89

    Google Scholar 

  • Kulasooriya SA (2011) Cyanobacteria: pioneers of planet earth. Ceylon J Sci (Bio Sci) 40(2):71–88

    Google Scholar 

  • Kumar A, Singh JS (2016) Microalgae and cyanobacteria biofuels: a sustainable alternate to crop-based fuels. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press Pvt. Ltd., New Delhi, pp 1–20

    Google Scholar 

  • Kumar N, Bora A, Kumar R, Amb MK (2012) Differential effects of agricultural pesticides endosulfan and tebuconazole on photosynthetic pigments, metabolism and assimilating enzymes of three heterotrophic, filamentous cyanobacteria. J Biol Environ Sci 6(16):67–75

    Google Scholar 

  • Kumar NJI, Amb MK, Kumar RN, Bora A, Khan SR (2013) Studies on biodegradation and molecular characterization of 2,4-D ethyl ester and pencycuron induced cyanobacteria by using GC-MS and 16S r DNA sequencing. Proc Int Acad Ecol Environ Sci 3(1):1–24

    Google Scholar 

  • Kuritz T (1999) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol Symp Supplement 85:186S–192S

    Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61:234–238

    CAS  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HPE, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    Article  CAS  Google Scholar 

  • Lee SE, Kim JS, Kennedy IR, Park JW, Kwon GS, Koh SC, Kim JE (2003) Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena Species. J Agric Food Chem 51:1336–1340

    Article  CAS  Google Scholar 

  • Lindberg P, Schütz K, Happe T, Lindblad P (2002) A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrogen Energy 27:1291–1296

    Article  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  CAS  Google Scholar 

  • Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates-The ability of Spirulina spp. to degrade glyphosate. Enzyme Microb Technol 41:286–291

    Article  CAS  Google Scholar 

  • Lipok J, Wieczorek D, Jewginski M, Kafarski P (2009) Prospects of in vivo 31P NMR method in glyphosate degradation studies in whole cell system. Enzyme Microb Technol 44:11–16

    Article  CAS  Google Scholar 

  • Lusta KA, Starostina NG, Fikhte BA (1990) Immobilization of microorganisms: cytophysiological aspects. In: De Bont JAM, Visser J, Mattiasson B, Tramper J (eds) Proceedings of an international symposium: physiology of immmobilized cells. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Majewski MS, Capel PD (1995) Pesticides in the atmosphere: distribution, trends, and governing factors, Pesticides in the hydrologic system, vol Vol 1. Ann Arbor Press Inc, Ann Arbor, MI, p. 118

    Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  • Manahan SE (2001) Fundamentals of environmental chemistry, 2nd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  Google Scholar 

  • Martin H (1968) Pesticides manual. British Crop Protection Council, London

    Google Scholar 

  • Martín M, Mengs G, Plaza E, Garbi C, Sánchez M, Gibello A, Gutiérrez F, Ferrer E (2000) Propachlor removal by Pseudomonas strain GCH1 in a immobilized-cell system. Appl Environ Microbiol 66(3):1190–1194

    Article  Google Scholar 

  • Masukawa H, Inoue K, Sakurai H (2007) Effects of disruption of homocitrate synthase genes on Nostoc sp. Strain PCC 7120 photobiological hydrogen production and nitrogenase. Appl Environ Microbiol 73:7562–7570

    Article  CAS  Google Scholar 

  • McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:5032–5038

    Article  CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39:251–256

    Article  CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  CAS  Google Scholar 

  • Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M et al (2000) Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Appl Biochem Biotechnol 84:991–1002

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  Google Scholar 

  • Moslemy P, Guiot SR, Neufeld RJ (2002) Production of size-controlled gellan gum microbeads encapsulating gasoline-degrading bacteria. Enzyme Microb Technol 30:10–18

    Article  CAS  Google Scholar 

  • Mostafa FIY, Helling CS (2001) Isoproturon degradation as affected by the growth of two algal species at different concentrations and pH values. J Environ Sci Health B 36(6):709–727

    Article  CAS  Google Scholar 

  • Murali O, Shaik G, Mehar SK (2014) Assessment of bioremediation of Cobalt and Chromium using cyanobacteria. Ind J Fund Appl Life Sci 4(1):252–255

    Google Scholar 

  • Niederholtmeyer H, Wolfstadter BT, Savage DF, Silver PA, Way JC (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76:3462–3466

    Article  CAS  Google Scholar 

  • Nobles D, Brown R (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellul 15:691–701

    Article  CAS  Google Scholar 

  • O’Neil W, Raucher R, Wayzata MN (1998) Groundwater Policy Education Project, Groundwater public policy leaflet series #4: the costs of groundwater contamination.

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallol JL (2011) Pesticides in the environment: impacts and its biodegradation as a strategy for residues treatment. In: Stoytcheva M (ed) Pesticides - formulations, effects, fate. InTech, Rijeka, pp 551–574

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Chamy R, Rosenkranz F (eds) Biodegradation - life of science. InTech, Rijeka

    Google Scholar 

  • Orus MI, Marco E (1991) Disappearance of trichlorophon from cultures with different cyanobacteria. Bull Environ Contam Toxicol 47:392–397

    Article  CAS  Google Scholar 

  • Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide metabolizing enzymes in marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyifos exposure. Pestic Biochem Physiol 94:68–72

    Article  CAS  Google Scholar 

  • Parkinson A (2001) Biotransformation of xenobiotics. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York, NY, pp 133–224

    Google Scholar 

  • Qiong LI, Qing T, Xudong XU, Hong GAO (2010) Expression of organophosphorous-degradation gene (opd) in aggregating and non-aggregating filamentous nitrogen-fixing cyanobacteria. Chinese J Oceanol Limnol 28:1248–1253

    Article  CAS  Google Scholar 

  • Racke KD, Skidmore MW, Hamilton DJ, Unsworth JB, Miyamoto J, Cohen SZ (1997) Pesticide fate in tropical soils. Pure Appl Chem 69:1349–1371

    Article  CAS  Google Scholar 

  • Ravi V, Balakumar H (1998) Biodegradation of the C-P bond in glyphosate by the cyanobacterium Anabaena variabilis L. J Sci Ind Res India 57:790–794

    CAS  Google Scholar 

  • Ravindran CRM, Suguna S, Shanmugasundaram S (2000) Tolerance of oscillatoria isolates to agrochemicals and pyrethroid components. Indian J Exp Biol 38:402–404

    CAS  Google Scholar 

  • Reddy BR, Sethunathan N (1985) Salinity and the persistence of parathion in flooded soil. Soil Biol Biochem 17:235–239

    Article  CAS  Google Scholar 

  • Reppas NB, Ridley CP (2010) Methods and compositions for the recombinant biosynthesis of n-alkanes. Patent US 7794969, Joule Unlimited, Inc., Washington, DC

    Google Scholar 

  • Richins R, Mulchandani A, Chen W (2000) Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. Biotechnol Bioeng 69:591–596

    Article  CAS  Google Scholar 

  • Roberts TR (1998) Metabolic pathways of agrochemicals-part 1: herbicides and plant growth regulators. The Royal Society of Chemistry, Cambridge, pp. 396–399

    Book  Google Scholar 

  • Roberts TR, Hutson DH (1999) Acephate: metabolic pathways of agrochemicals - part 2: insecticides and fungicides. The Royal Society of Chemistry, Cambridge, pp. 201–204

    Book  Google Scholar 

  • Robinson PK, Mak AL, Trevan MD (1986) Immobilized algae: a review. Process Biochem 21:122–126

    CAS  Google Scholar 

  • Roessler PG, Chen Y, Liu B, Dodge CN (2009) Secretion of fatty acids by photosynthetic microorganisms in Patent US, Ed. Synthetic Genomics, United States

    Google Scholar 

  • Savonen C (1997) Soil microorganisms object of new OSU service. Good Fruit Grower. http://www.goodfruit.com/archive/1995/6other.html

  • Singh PK (1973) Effect of pesticides on blue-green algae. Arch Microbiol 89:317–320

    CAS  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48(1):35–40

    Article  Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7(923):1–5

    Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JIS, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011b) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res 18:1351–1359

    Article  CAS  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011c) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher Co., New Delhi, pp 223–243

    Google Scholar 

  • Singh DP, Khattar JIS, Kaur M, Kaur G, Gupta M et al (2013) Anilofos tolerance and its mineralization by the Cyanobacterium Synechocystis sp. strain PUPCCC 64. PLoS One 8(1):e53445

    Article  CAS  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4(1):1–6

    CAS  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Sode K, Yamamoto Y, Hatano N (1998) Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothioneins gene. J Mar Biotechnol 6:174–177

    CAS  Google Scholar 

  • Subramanian G, Sekar S, Sampoornam S (1994) Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int Biodegrad Biodetertor 33:129–143

    Article  Google Scholar 

  • Sun W, Chen Y, Liu L, Tang J, Chen J, Liu P (2010) Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism. Bioresour Technol 101:9197–9203

    Article  CAS  Google Scholar 

  • Taha TH, Taha Alamri SA, Mahdy HM, Hafez EE (2013) The effects of various immobilization matrices on biosurfactant production using hydrocarbon (HC)-degrading marine bacteria via the entrapment technique. J Biol Sci 13:48–57

    Article  CAS  Google Scholar 

  • Takeshima Y, Takatsugu N, Sugiura M, Hagiwara H (1994) High-level expression of human superoxide dismutase in the cyanobacterium Anacystis nidulans 6301. Proc Natl Acad Sci U S A 91:9685–9689

    Article  CAS  Google Scholar 

  • Tao XQ, Lu GN, Liu JP, Li T, Yang LN (2009) Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. Int J Environ Res Public Health 6:2470–2480

    Article  CAS  Google Scholar 

  • Terre Des Hommes (2011) Pestizide und Kinder. PAN Germany, Osnabrück

    Google Scholar 

  • Thengodkar RRM, Sivakami S (2010) Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21:637–644

    Article  CAS  Google Scholar 

  • Topp E, Vallaeys T, Soulas G (1997) Pesticides microbial degradation and effect on microorganisms. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Mercel Dekker Inc., New York, pp 547–575

    Google Scholar 

  • UNEP (2004) Childhood pesticide poisoning, Châtelaine

    Google Scholar 

  • Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb Technol 17:200–205

    Article  CAS  Google Scholar 

  • US EPA (2001) Source water protection practices bulletin: Managing small-scale application of pesticides to prevent contamination of drinking water. Office of Water, Washington, DC EPA 816-F-01-031

    Google Scholar 

  • Velázquez-Fernández JB, Martínez-Rizo AB, Ramírez-Sandoval M, Domínguez-Ojeda D (2012) Biodegradation and bioremediation of organic pesticides. In: Soundarajan RP (ed) Pesticides – recent trends in pesticide residue assay. InTech, Rijeka

    Google Scholar 

  • Vermaas WFJ (2001) Photosynthesis and respiration in cyanobacteria. Wiley, New York

    Book  Google Scholar 

  • Waliszewski SM, Carvajal O, Gomez-Arroyo S, Amador-Munoz O, Villalobos-Pietrini R, Hayward-Jones PM, Valencia-Quintana R (2008) DDT and HCH isomer levels in soils, carrot root and carrot leaf samples. Bull Environ Contam Toxicol 81:343–347

    Article  CAS  Google Scholar 

  • Walker WW (1976) Chemical and microbiological degradation of malathion and in an estuarine environment. J Environ Qual 5:210–216

    Article  CAS  Google Scholar 

  • Waskom R (1994) Best management practices for private well protection. Colorado State Univ. Cooperative Extension. http://hermes.ecn.purdue.edu:8001/cgi/convertwq?7488

  • Weber K (1976) Degradation of parathion in seawater. Water Res 10:237–241

    Article  CAS  Google Scholar 

  • Whitton BA, Potts M (2000) Introduction to the cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic, Dordrecht, The Netherlands, pp 1–11

    Google Scholar 

  • WWF (2002) Gefahr durch hormonell wirksame Pestizide und Biozide, Schadstoffe in Lebensmitteln, Garten und Haus. WWF-Fachbereich Meere und Küsten, Bremen

    Google Scholar 

  • Yoshino F, Ikeda H, Masukawa H, Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Marine Biotechnol 9:101–112

    Article  CAS  Google Scholar 

  • Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T et al (2000) Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35:1061–1064

    Article  CAS  Google Scholar 

  • Zacharia JT (2011) Identity, physical and chemical properties of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world - trends in pesticides analysis. InTech, Rijeka

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Shankar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, A., Singh, J.S. (2017). Cyanoremediation: A Green-Clean Tool for Decontamination of Synthetic Pesticides from Agro- and Aquatic Ecosystems. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49727-3_4

Download citation

Publish with us

Policies and ethics