Skip to main content

Hybrid Ceramic Materials for Environmental Applications

  • Chapter
  • First Online:
Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications

Abstract

Ceramics and ceramic nanocomposites have attracted a lot of interest in the recent past due to their relatively easy and well understood fabrication techniques as well as an array of commercial applications ranging from structural to environmental. Their properties have been tailored to suit the desired applications through nano-structuring of mono-, di-, tri- and even multi-phasic systems. This chapter highlights some of the current state of knowledge on synthesis, processing, mechanical properties and environmental applications of nanoceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brow RK, Schmitt ML (2009) J Eur Ceram Soc 29:1193–1201

    Article  Google Scholar 

  2. Nanko M (2009) Definitions and categories of hybrid materials. ISSN 1833-122X. Doi:10.2240/azojomo0288

  3. Powder Matrix Technology Roadmaps, Advanced Ceramics Report no. RM/01/04/PX (2004) http://www.powdermatrix.org

  4. Rodel J, Kounga ABN, Weissenberger-Eibl M, Koch D, Bierwisch A, Rossner W, Hoffmann MJ, Danzerf R, Schneider G (2009) J Eur Ceram Soc 29:1549–1560

    Article  Google Scholar 

  5. Bhaduri S, Bhaduri SB (1998) Emerg Technol Overview, 44–51

    Google Scholar 

  6. Palmero P (2015) Nanomaterials 5:656–696

    Article  Google Scholar 

  7. Ahmad I, Yazdani B, Zhu Y (2015) Nanomaterials 5:90–114

    Article  Google Scholar 

  8. Mera G, Gallei M, Bernard S, Ionescu E (2015) Nanomaterials 5:468–540

    Article  Google Scholar 

  9. Camargo PHC, Satyanarayana KG, Wypych F (2009) Mater Res 12:1–39

    Article  Google Scholar 

  10. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, Weinheim

    Google Scholar 

  11. Pacheco-Malagon G, Garcia-Borquez A, Coster D, Sklyarov A, Petit S, Fripiat JJ (1995) J Mater Res 10:1264–1269

    Article  Google Scholar 

  12. Balmer ML, Lange FF, Jayaram V, Levi CG (1995) J Am Ceram Soc 78:1489–1494

    Article  Google Scholar 

  13. Zhang Y, Li J, Li Q, Zhu L, Liu X, Zhong X, Meng J, Cao X (2007) J Colloid Interface Sci 307:567–571

    Article  Google Scholar 

  14. Kusior A, Klich-Kafel J, Trenczek-Zajac A, Swierczek K, Radecka M, Zakrzewska K (2013) J Eur Ceram Soc 33:2285–2290

    Article  Google Scholar 

  15. Kundu TK, Mukherjee M, Chakravorty D, Sinha TP (1998) J Mater Sci 33:1759–1763

    Article  Google Scholar 

  16. Baiju K, Sibu CP, Rajesh K, Pillai PK, Mukundan P, Warrier KGK, Wunderlich W (2005) Mater Chem Phys 90:123–127

    Article  Google Scholar 

  17. Strutt PR, Xiao TD, Gonsalves KE, Boland R (1993) Nanostruct Mater 2:347–353

    Article  Google Scholar 

  18. Stiegman E, Eckert H, Plett G, Kim SS, Anderson M, Yavrouian A (1993) Chem Mater 5:1591–1594

    Article  Google Scholar 

  19. Kazakos A, Komarneni S, Roy R (1990) Mat Lett 9:405–409

    Article  Google Scholar 

  20. Hoffman D, Roy R, Komarneni S (1984) Mat Lett 2:245–247

    Article  Google Scholar 

  21. Komarneni S, Suwa Y, Roy R (1986) J Am Ceram Soc 69:C155–C156

    Article  Google Scholar 

  22. Vilmin G, Komarneni S, Roy R (1987) J Mater Res 2:489–493

    Article  Google Scholar 

  23. Kong PC, Lau YC (1990) Pure App Chem 62:1809–1816

    Article  Google Scholar 

  24. Lee YI, Lee J-H, Hong S-H, Kim D-Y (2003) Mater Res Bull 38:925–930

    Article  Google Scholar 

  25. Gourbilleau F, Hillel R, Nouet G (1994) Nanostruct Mater 4:215–228

    Article  Google Scholar 

  26. Gourbilleau F, Hiilel R, Nouet G (1995) Nanostruct Mater 6:345–348

    Article  Google Scholar 

  27. Ito A, You Y, Ichikawa T, Tsuda K, Goto T (2014) J Eur Ceram Soc 34:155–159

    Article  Google Scholar 

  28. Wei C-H, Chang C-M (2011) Mater Trans 52(3):554–559

    Article  Google Scholar 

  29. Maya L, Thundat T, Thompson JR, Stevenson RJ (1995) Appl Phys Lett 67:3034–3036

    Article  Google Scholar 

  30. Dericioglu AF (2008) Mater Trans 49:2714–2722

    Article  Google Scholar 

  31. Komarneni S (1992) J Mater Chem 2:1219–1230

    Article  Google Scholar 

  32. Yamanaka S (1991) Am Ceram Soc Bull 70:1056–1058

    Google Scholar 

  33. Malla PB, Ravindranathan P, Komarneni S, Roy R (1991) Nature 351:555–557

    Article  Google Scholar 

  34. Su B, Sternitzke M, Borsa CE, Brook RJ (1995) Brit Ceram Proc 55:13

    Google Scholar 

  35. Sorarii GD, Ravagni A, Maschio RD, Carturan G (1992) J Mater Res 7:1266–1270

    Article  Google Scholar 

  36. Su K, Nowakowski M, Bonnell D, Sneddon LG (1992) Chem Mater 4:1139–1141

    Article  Google Scholar 

  37. Bhaduri SB, Bhaduri S, Huang J-G (1999) Ceramic engineering and science proceedings, vol 20. In: Ustundag E, Fischman G (eds).Wiley, USA

    Google Scholar 

  38. Siqueira JRR, Simoes AZ, Stojanovic BD, Paiva-Santos CO, Santos LPS, Longo E, Varela JA (2007) Ceram Int 33:937–941

    Article  Google Scholar 

  39. Horvath MP, Takacs L (1992) IEEE Trans Mag 28:3186–3188

    Google Scholar 

  40. Eom J-H, Kim Y-W, Raju S (2013) J Asian Ceram Soc 1:220–242

    Article  Google Scholar 

  41. Evans JRG, Greener J (1999) J Mater Process Technol 96:143–150

    Article  Google Scholar 

  42. Davidge RW (1969) Contemp Phys 10:105–124

    Article  Google Scholar 

  43. http://www.keramvaerband.de/brevier_eng/5/3/%_3_5.htm

  44. http://www.substech.com/dokuwiki/doku.php?id=electrical_properties_of_ceramics

  45. Padmaja K, Cherukuri J, Reddy MA (2014) Int J Innov Res Sci Eng Technol 3:9375–9385

    Google Scholar 

  46. Yang C, Zhang G, Xu N, Shi J (1998) J Membr Sci 142:235–243

    Article  Google Scholar 

  47. Wang P, Xu N, Shi J (2000) J Membr Sci 173:159–166

    Article  Google Scholar 

  48. Kwan SM, Yeung KL (2008) Chem Commun 31:3631–3633

    Article  Google Scholar 

  49. Mueller J, Cen J, Davis RH (1997) J Membr Sci 129:221–235

    Article  Google Scholar 

  50. Zhong J, Sun X, Wang C (2003) Sep Purif Technol 32:93–98

    Article  Google Scholar 

  51. Du L, Liu W, Hu S, Wang Y, Yang J (2014) J Eur Ceram Soc 34:731–738

    Article  Google Scholar 

  52. Kocakusakoglu A, Daglar M, Konyar M, Yatmaz HC, Ozturk K (2015) J Eur Ceram Soc 35:2845–2853

    Article  Google Scholar 

  53. Athanasekou CP, Moustakas NG, Torres SM, Martínez LMP, Figueiredo JL, Faria JL, Silva AMT, Rodriguez JMD, Romanos GE, Falaras P (2015) Appl Catal B 178:12–19

    Article  Google Scholar 

  54. Makwana NM, Hazael R, McMillan PF, Darr JA (2015) Photochem Photobiol Sci 14:1190

    Article  Google Scholar 

  55. Yoona SD, Byun HS, Yun YH (2015) Ceram Int 41:8241–8246

    Article  Google Scholar 

  56. Szymanski K, Morawski AW, Mozia S (In-press). Chem Eng J. Doi:10.1016/j.cej.2015.10.024

  57. Kujawa J, Cerneaux S, Kujawski W (2015) J Membr Sci 474:11–19

    Article  Google Scholar 

  58. Cui Z, Xing W, Fan Y, Xu N (2011) Desalination 279:190–194

    Article  Google Scholar 

  59. Xua J, Chang C-Y, Gao C (2010) Sep Purif Technol 75:165–173

    Article  Google Scholar 

  60. Cerneaux S, Struzynska I, Kujawski WM, Persina M, Larbot A (2009) J Membr Sci 337:55–60

    Article  Google Scholar 

  61. Gazagnes L, Cerneaux S, Persin M, Prouzet E, Larbot A (2007) Desalination 217:260–266

    Article  Google Scholar 

  62. El-Deena AG, Barakat NAM, Khalild KA, Motlak M, Kim HY (2014) Ceram Int 40:14627–14634

    Article  Google Scholar 

  63. Kyzas GZ, Fu J, Matis KA (2013) Materials 6:5131–5158

    Article  Google Scholar 

  64. Miedaner MM, Weerasooriya R, Tobschall HJ (2006). In: Johannes L (ed) Interface science and technology, Elsevier, Amsterdam, pp 469–490

    Google Scholar 

  65. Wijnja H, Schulthess CP (2000) J Colloid Interface Sci 229:286–297

    Article  Google Scholar 

  66. Kumar E, Bhatnagar A, Hogland W, Marques M, Sillanpaa M (2014) Chem Eng J 241:443–456

    Article  Google Scholar 

  67. Li Y-H, Wang S, Cao A, Zhao D, Zhang X, Xu C, Luan Z, Ruan D, Liang J, Wu D, Wei B (2001) Chem Phys Lett 350:412–416

    Article  Google Scholar 

  68. Hlavay J, Polyak K (2005) J Colloid Interface Sci 284:71–77

    Article  Google Scholar 

  69. Das S, Jayaraman V (2014) Prog Mater Sci 66:112–255

    Article  Google Scholar 

  70. Fenga Q, Li X, Wanga J, Gaskov AM (2016) Sens Actuators B 222:864–870

    Article  Google Scholar 

  71. Li X, Zhao Y, Wang X, Wang J, Gaskov AM, Akbar SA (2016) Sens Actuators B 230:330–336

    Article  Google Scholar 

  72. Galstyan V, Comini E, Baratto C, Faglia G, Sberveglieri G (2015) Nanostructured ZnO chemical gas sensors. Ceram Int 41:14239–14244

    Article  Google Scholar 

  73. Lyashkov AY, Tonkoshkur AS, Martinez JAA, Glot AB (2013) Ceram Int 39:2323–2330

    Article  Google Scholar 

  74. Cernat A, Tertis M, Sandulescu R, Bedioui F, Cristea A, Cristea C (2015) Analytica Chimica Acta 886:16–28

    Article  Google Scholar 

  75. Arvand M, Gholizadeh TM (2013) Colloids Surf B 103:84–93

    Article  Google Scholar 

  76. Banerjeea S, Dionysiou DD, Pilla SC (2015) Appl Catal B 176–177:396–428

    Article  Google Scholar 

  77. Tadanaga K, Morinaga J, Matsuda A, Minami T (2000) Chem Mater 12:590–592

    Article  Google Scholar 

  78. Houmard M, Berthome G, Joud JC, Langlet M (2011) Surf Sci 605:456–462

    Article  Google Scholar 

  79. Zhu W, Feng X, Feng L, Jiang L (2006) Chem Commun 26:2753–2755

    Article  Google Scholar 

  80. Andre R, Natalio F, Tahir MN, Berger R, Tremel W (2013) Nanoscale 5:3447–3456

    Article  Google Scholar 

  81. Sun RD, Nakajima A, Fujishima A, Watanabe T, Hashimoto K (2001) J Phys Chem B 105:1984–1990

    Article  Google Scholar 

  82. Lianga MS, Khaw CC, Liu CC, Chin SP, Wang J, Li H (2013) Ceram Int 39:1519–1523

    Article  Google Scholar 

  83. Asemi M, Ghanaatshoar M (2016) Ceram Int 42:6664–6672

    Article  Google Scholar 

  84. Lianga MS, Khaw CC, Liu CC, Chin SP, Wang J, Li H (2013) Ceram Int 39:1519–1523

    Article  Google Scholar 

  85. Zhi J, Cui H, Chen A, Xie Y, Huang F (2015) J Power Sources 281:404–410

    Article  Google Scholar 

  86. Sujinnapram S, Moungsrijun S (2015) Procedia Manuf 2:108–112

    Article  Google Scholar 

  87. Maeda K (2011) J Photochem Photobiol, C 12:237–268

    Article  Google Scholar 

  88. Aroutiounian VM, Arakelyan VM, Shahnazaryan GE (2005) Sol Energy 78:581–592

    Article  Google Scholar 

  89. Kawakami S, Myojin T, Cho HS, Hatamachi T, Gokonc N, Kodama T (2014) Energy Procedia 49:1980–1989

    Article  Google Scholar 

  90. Raso RA, Stepuk A, Mohn D, Paunescu D, Koehler FM, Stark WJ (2014) Appl Catal B 147:965–972

    Article  Google Scholar 

  91. Yao Y, Li G, Gray K, Lueptow RM (2009) US Patent Publication No. US2009/0175757 A1

    Google Scholar 

  92. Zhong L, Haghighat F (2015) Build Environ 91:191–203

    Article  Google Scholar 

  93. Amin MT, Alazba AA, Manzoor U (2014) Adv Mater Sci Eng. doi:10.1155/2014/825910

    Google Scholar 

  94. Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) J Membr Sci 331:50–56

    Article  Google Scholar 

  95. Ohira T, Yamamoto O (2012) Chem Eng Sci 68:355–361

    Article  Google Scholar 

  96. Raveendra RS, Prashanth PA, Krishna RH, Bhagya NP, Nagabhushana BM, Naika HR, Lingaraju K, Nagabhushana H, Prasad BD (2014) J Asian Ceram Soc 2:357–365

    Article  Google Scholar 

  97. Sabbani S, Perez DG, Nagy A, Waldman WJ, Hansford D, Dutta PK (2010) Micropor Mesopor Mater 135:131–136

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Nanotechnology and Water Sustainability Research Unit (NanoWS), University of South Africa (UNISA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex T. Kuvarega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuvarega, A.T., Shivani, B., Mamba, B.B. (2017). Hybrid Ceramic Materials for Environmental Applications. In: Mishra, A. (eds) Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-49512-5_10

Download citation

Publish with us

Policies and ethics