Skip to main content

Approximation by Bernstein–Faber–Walsh and Szász–Mirakjan–Faber–Walsh Operators in Multiply Connected Compact Sets of \(\mathbb{C}\)

  • Chapter
  • First Online:
Progress in Approximation Theory and Applicable Complex Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 117))

Abstract

By considering a multiply connected compact set \(G \subset \mathbb{C}\) and an analytic function on G, we attach the q-Bernstein–Faber–Walsh polynomials with q ≥ 1, for which Voronovskaja-type results with quantitative upper estimates are given and the exact orders of approximation in G for these polynomials, namely \(\frac{1} {n}\) if q = 1 and \(\frac{1} {q^{n}}\) if q > 1, are obtained. Also, given a sequence with the property λ n  ↘ 0 as fast as we want, a type of Szász–Mirakjan–Faber–Walsh operator is attached to G, for which the approximation order O(λ n ) is proved. The results are generalizations of those previously obtained by the author for the q-Bernstein–Faber polynomials and Szász–Faber type operators attached to simply connected compact sets of the complex plane. The proof of existence for the Faber–Walsh polynomials used in our constructions is strongly based on some results on the location of critical points obtained in the book of Walsh (The location of critical points of analytic and harmonic functions, vol 34. American Mathematical Society, New York, 1950), which is also used in the major book of Rahman–Schmeisser (Analytic theory of polynomials, vol 26. Oxford University Press Inc, New York, 2002). At the end of the chapter, we present and motivate a conjecture and an open question concerning the use of truncated classical Szász–Mirakjan operators in weighted approximation and in solving a generalization of the Szegó’s problem concerning the zeroes distribution for the partial sums of the exponential function, respectively. Concerning the open question, the extensions of Eneström–Kakeya Theorem in Govil–Rahman (Tôhoku Math J 20(2):126–136, 1968) and other results on the location of the zeroes of polynomials in the Rahman–Schmeisser’s book (Analytic theory of polynomials, vol 26. Oxford University Press Inc, New York, 2002) are of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein, S.N.: Sur la convergence de certaines suites des polynômes. J. Math. Pures Appl. 15 (9), 345–358 (1935)

    MATH  Google Scholar 

  2. Bernstein, S.N.: Sur le domaine de convergence des polynômes. C. R. Acad. Sci. Paris 202, 1356–1358 (1936)

    MATH  Google Scholar 

  3. Bernstein, S.N.: On the domains of convergence of polynomials (in Russian). Izv. Akad. Nauk. SSSR. Ser. Math. 7, 49–88 (1943)

    Google Scholar 

  4. Dressel, F.G., Gergen, J.J., Purcell, W.H.: Convergence of extended Bernstein polynomials in the complex plane. Pac. J. Math. 13 (4), 1171–1180 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faber, G.: Über polynomische Entwicklungen. Math. Ann. 64, 116–135 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fekete, M., Walsh, J.L.: On the asymptotic behavior of polynomials with extremal properties, and of their zeros. J. d’Anal. Math. 4, 49–87 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fekete, M., Walsh, J.L.: Asymptotic behavior of restricted extremal polynomials, and of their zeros. Pac. J. Math. 7, 1037–1064 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  9. Gal, S.G.: Approximation by Complex Bernstein and Convolution-Type Operators. World Scientific Publications Company, Singapore (2009)

    Book  MATH  Google Scholar 

  10. Gal, S.G.: Approximation by complex Bernstein-Durrmeyer polynomials with Jacobi weights in compact disks. Math. Balk. (N.S.) 24 (1–2), 103–119 (2010)

    Google Scholar 

  11. Gal, S.G.: Approximation by complex genuine Durrmeyer type polynomials in compact disks. Appl. Math. Comput. 217, 1913–1920 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Gal, S.G.: Approximation in compact sets by q-Stancu-Faber polynomials, q > 1. Comput. Math. Appl. 61 (10), 3003–3009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gal, S.G.: Overconvergence in Complex Approximation. Springer, New York (2013)

    Book  MATH  Google Scholar 

  14. Gal, S.G.: Approximation of analytic functions by generalized Favard–Szász–Mirakjan–Faber operators in compact sets. Complex Anal. Oper. Theory 9 (5), 975–984 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gal, S.G., Gupta, V.: Approximation by complex Durrmeyer type operators in compact disks. In: Pardalos, P.M., Rassias, T.M. (eds.) Mathematics without Boundaries: Surveys in Interdisciplinary Research, pp. 263–284. Springer, New York (2014)

    Google Scholar 

  16. Gal, S.G., Gupta, V.: Approximation by the complex form of a link operator between the Phillips and the Szász-Mirakjan operators. Results Math. 67 (3), 381–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gal, S.G., Gupta, V.: Approximation by complex Baskakov-Szász-Durrmeyer operators in compact disks. Anal. Theory Appl. 31 (2), 207–220 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Gal, S.G., Opris, B.D.: Approximation of analytic functions with an arbitrary order by generalized Baskakov-Faber operators in compact sets. Complex Anal. Oper. Theory 10 (2), 369–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gal, S.G., Gupta, V., Mahmudov, N.I.: Approximation by a complex q-Durrmeyer type operator. Ann. Univ. Ferrara 58 (1), 65–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer, New York (2014)

    Book  MATH  Google Scholar 

  21. Govil, N.K., Rahman, Q.I.: On the Eneström-Kakeya theorem. Tôhoku Math. J. 20 (2), 126–136 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kantorovitch, L.V.: Sur la convergence de la suite de polynômes de S. Bernstein en dehors de l’interval fundamental. Bull. Acad. Sci. URSS 8, 1103–1115 (1931)

    MATH  Google Scholar 

  23. László, Z., Vörös, Z.: On the limit of a sequence. Acta Math. Acad. Paedagog. Nyíregyházi. 15, 35–40 (1999)

    MATH  Google Scholar 

  24. Lehnoff, H.-G.: On a modified Szász-Mirakjan operator. J. Approx. Theory 42, 278–282 (1984)

    Article  MathSciNet  Google Scholar 

  25. Lorentz, G.G.: Bernstein Polynomials. 2nd edn. Chelsea Publications, New York (1986)

    MATH  Google Scholar 

  26. Mahmudov, N.I.: Convergence properties and iterations for q-Stancu polynomials in compact disks. Comput. Math. Appl. 59 (12), 3763–3769 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mahmudov, N.I.: Approximation by Bernstein-Durrmeyer-type operators in compact disks. Appl. Math. Lett. 24 (7), 1231–1238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ostrovska, S.: q-Bernstein polynomials and their iterates. J. Approx. Theory 123 (2), 232–255 (2003)

    Google Scholar 

  29. Pritsker, I.E., Varga, R.S.: The Szegö curve, zero distribution and weighted approximation. Trans. Am. Math. Soc. 349, 4085–4105 (1997)

    Article  MATH  Google Scholar 

  30. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. London Mathematical Society Monographs, vol. 26. Oxford University Press Inc, New York (2002)

    Google Scholar 

  31. Ren, M.-Y., Zeng, X.-M.: Approximation by complex q-Bernstein-Schurer operators in compact disks. Georgian Math. J. 20 (2), 377–395 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ren, M.-Y., Zeng, X.-M., Zeng, L.: Approximation by complex Durrmeyer-Stancu type operators in compact disks. J. Inequal. Appl. 2013, 442 (2013)

    Google Scholar 

  33. Sète, O.: Some properties of Faber–Walsh polynomials. arXiv:1306.1347 (2013)

    Google Scholar 

  34. Sète, O., Liesen, J.: Properties and examples of Faber-Walsh polynomials. arXiv:1502.07633 (2015)

    Google Scholar 

  35. Sète, O., Liesen, J.: On conformal maps from lemniscatic domains onto multiply-connected domains. Electron. Trans. Numer. Anal. 45, 1–15 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Sucu, S., Ibikli, E.: Approximation by Jakimovski–Leviatan type operators on a complex domain. Complex Anal. Oper. Theory 8 (1), 177–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Suetin, P.K.: Series of Faber Polynomials. Gordon and Breach Science Publishers, Amsterdam (1998)

    MATH  Google Scholar 

  38. Surulescu, N.: On some sequences derived from the Poisson distribution. Acta Math. Acad. Paedagog. Nyíregyház. 18, 7–12 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Szegö, G: Über eine Eigenschaft der Exponentialreihe. Sitzungsber. Berl. Math. Ges. 23, 50–64 (1924)

    MATH  Google Scholar 

  40. Tonne, P.C.: On the convergence of Bernstein polynomials for some unbounded analytic functions. Proc. Am. Math. Soc. 22, 1–6 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  41. Walsh, J.L.: The Location of Critical Points of Analytic and Harmonic Functions. American Mathematical Society Colloquium Publishers, vol. 34. American Mathematical Society, New York (1950)

    Google Scholar 

  42. Walsh, J.L.: On the conformal mapping of multiply connected regions. Trans. Am. Math. Soc. 82, 128–146 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  43. Walsh, J.L.: A generalization of Faber’s polynomials. Math. Ann. 136, 23–33 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, H., Wu, X.Z.: Saturation of convergence for q-Bernstein polynomials in the case q ≥ 1. J. Math. Anal. Appl. 337, 744–750 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wood, B.: On a generalized Bernstein polynomial of Jakimovski and Leviatan. Math. Zeitschr. 106, 170–174 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wright, E.M.: The Bernstein approximation polynomials in the complex plane. J. Lond. Math. Soc. 5, 265–269 (1930)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank the referee for his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin G. Gal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gal, S.G. (2017). Approximation by Bernstein–Faber–Walsh and Szász–Mirakjan–Faber–Walsh Operators in Multiply Connected Compact Sets of \(\mathbb{C}\) . In: Govil, N., Mohapatra, R., Qazi, M., Schmeisser, G. (eds) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-49242-1_19

Download citation

Publish with us

Policies and ethics