Skip to main content

Abstract

The thermochemical data of iron oxide redox reactions in various textbooks and handbooks are not consistent. To clarify such confusions, the elementary thermodynamic data of various iron oxides, carbon oxides, hydrogen and water vapor are used to calculate the changes of thermodynamic quantities such as enthalpy, entropy and Gibbs free energy of the redox reactions. The predominance area diagrams are then reconstructed according to the newly calculated Gibbs free energy changes. In order to fit the precise Gibbs free energy data, the constrained optimization method is adopted based on the mathematical modeling software Lingo 11. The reduction experiments are successfully carried out to verify the calculated eutectoid temperature. It is concluded with sixteen empirical thermodynamic equilibrium formulas and eight enthalpy values at 25°C for iron oxides reduced by CO and H2, and the eutectoid temperature of the three iron oxide phases is 576°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogdandy, L. V.; Engell, H. J. The Reduction of Iron Ores; Springer Verlag: Berlin, 1971.

    Book  Google Scholar 

  2. Liang, L. K.; Che, Y. C.; Yang, H.; Li, X. W. Metallurgical Thermodynamics and Kinetics; Northeastern University of Technology Press: Shenyang, 1990; pp 86–90.

    Google Scholar 

  3. Kirkaldy, J. S.; Ward, R. G. Aspects of Modern Ferrous Metallurgy; University of Toronto Press: Toronto, 1964; pp 102–105.

    Google Scholar 

  4. Rao Y. K. Stoichiometry and Thermodynamics of Metallurgical Processes; Cambridge University Press: London, 1985; pp 726–773.

    Google Scholar 

  5. Han, Q. Y. Metallurgical Kinetics; Metallurgical Industry Press: Beijing, 1983; pp 156–157.

    Google Scholar 

  6. John, F. E. The Physical Chemistry of Steelmaking; The Technology Press of MIT, John Wiley & Sons, Inc. & Chapman & Hall, 1956; pp 159–164.

    Google Scholar 

  7. Coudurier, L.; Hopkins, D. W.; Wilkomirsky, I. Fundamentals of Metallurgical Processes, 2nd ed.; Pergamon Press: New York, 1985; pp 159–162.

    Google Scholar 

  8. Chu, M.; Nogami, H.; Yagi, J. I. ISIJ Int. 2004, 44(3), 510.

    Article  Google Scholar 

  9. Chu, M.; Yagi, J. I. Steel Res. Int. 2010, 81(12), 1043.

    Article  Google Scholar 

  10. Bahgat, M.; Halim, K. S. A.; El-Kelesh, H. A.; Nasr M. I. Steel Res. Int. 2012, 83(7), 686.

    Article  Google Scholar 

  11. Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; Wiley-Vch Verlag: Weinheim, 1995.

    Book  Google Scholar 

  12. NIST-JANAF. Thermochemical Tables, 4th ed.; Journal of Physical and Chemical Reference Data Monograph, No.9, 1998.

    Google Scholar 

  13. Barin, L; Knacke, O. Thermochemical Properties of Inorganic Substances, Springer-Verlag: Berlin, 1973; Supplement, 1977.

    Book  Google Scholar 

  14. Braithwaite. Chem. News 1895, 72, 211.

    Google Scholar 

  15. Baur, L. E.; Glaessner, A. Z. Phys. Chemie 1903, 354(43), 68.

    Google Scholar 

  16. Zhang, W.; Zou, Z. S.; Zhang, J. H.; LI, Q.; Qi, Y. H. J. Phys. Chem. C 2013, submitted.

    Google Scholar 

  17. Schenck; Semiller and Falcke. Chem. Ber. 1907, 40, 1704.

    Article  Google Scholar 

  18. Schenck and Heller. Chem. Ber. 1905, 38, 2132.

    Google Scholar 

  19. Eastman, E. D. J. Am. Chem. Soc. 1922, 44(5), 975.

    Google Scholar 

  20. Eastman, E. D.; Evans, R. M. J. Am. Chem. Soc. 1924, 46(4), 888.

    Google Scholar 

  21. Emmett, P. H.; Shultz, J. F. J. Am. Chem. Soc. 1930, 52, 4268.

    Google Scholar 

  22. Emmett, P. H.; Shultz, J. F. J. Am. Chem. Soc. 1933, 55, 1376.

    Article  Google Scholar 

  23. Chipman, J.; Marshall, S. J. Am. Chem. Soc. 1940, 62, 299.

    Article  Google Scholar 

  24. Darken, L. S.; Gurry, R. W. J Am. Chem. Soc. 1945, 67, 1398.

    Article  Google Scholar 

  25. Darken, L. S.; Gurry, R. W. J Am. Chem. Soc. 1946, 68, 789.

    Article  Google Scholar 

  26. Wang, X. L. Ferrous Metallurgy (Ironmaking Department); Metallurgical Industry Press: Beijing, 2002; pp.82–85.

    Google Scholar 

  27. Li, H. G. Metallurgical Theory; Science Press: Beijing, 2005; pp. 156–206.

    Google Scholar 

  28. Zhu, M. Y. Modern Metallurgy (Ferrous Metallurgy); Metallurgical Industry Press: Beijing, 2005; pp.60–62.

    Google Scholar 

  29. Hara, Y.; Tsuchiya, M.; Kondo, S. I. Tetsu to Hagane 1974, No. 9, 1261.

    Google Scholar 

  30. Murayama, T.; Ono, Y.; Kawai, Y. Tetsu to Hagane 1977, No. 7, 1099.

    Google Scholar 

  31. Ono-Nakazato, H.; Yonezawa, T.; Usui, T. ISIJ Int. 2003, 43(10), 1502.

    Article  Google Scholar 

  32. Takahashi, R.; Takahashi, Y.; Yagi, J. I.; Omori, I. Trans. ISIJ 1986, 26, 765.

    Article  Google Scholar 

  33. Pineau, A.; Kanari, N.; Gaballah, I. Thermochim. Acta 2007, 456, 75.

    Article  Google Scholar 

  34. Conejo, A. N.; Martins, G. P. ISIJ Int. 1997, 37(10), 967.

    Article  Google Scholar 

  35. Hayashi, S.; Iguchi, Y. ISIJ Int. 1998, 38(10), 1053.

    Article  Google Scholar 

  36. El-Geassy, A. A.; Nasr, M. I. ISIJ Int. 1990, 30(6), 417.

    Article  Google Scholar 

  37. Pineau, A.; Kanari, N.; Gaballah, I. Thermochim. Acta 2006, 447, 89.

    Article  Google Scholar 

  38. Wimmers, O. J.; Arnoldy, P.; Moulijn, J. A. J. Phys. Chem. 1986, 90, 1331.

    Article  Google Scholar 

  39. Khader, M. M.; El-Anadouli, B. E.; El-Nagar, E.; Ateya, B. G. J. Solid State Chem. 1991, 93, 283.

    Article  Google Scholar 

  40. Jozwiak, W. K.; Kaczmarek, E.; Maniecki, T. P. Appl. Catal., A-Gen. 2007, 326, 17.

    Article  Google Scholar 

  41. Zhao, P.; Guo, P. M.; Zhang, D. W. Iron and Steel 2006, 41, 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Zhang, W. et al. (2013). Thermodynamic Analyses of Iron Oxides Redox Reactions. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_96

Download citation

Publish with us

Policies and ethics