Skip to main content
  • 20 Accesses

Abstract

The internal states or local structures of bulk metallic glass (BMGs) can be well reflected from the changes of density, structural relaxation as well as the elastic constants. With the increasing free volume (FV) content, more local atomic clusters are capable of simultaneous plastic shear at different sites in the metallic glasses, inducing large plasticity. In this work, we report a close correlation between the internal states and strength in a BMG and discover that the yield strength can be changed by varying of the casting current, revealing that the yielding strength of BMGs is not only intrinsically associated with the glass transition, but also with the internal states, such as free volume and elastic properties. Such results may have some implications for understanding the correlations between the internal states and mechanical properties of BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. He, N. Mattern, J. Tan, J.Z. Zhao, I. Kaban, Z. Wang, L. Ratke, D.H. Kim, W.T. Kim, J. Eckert, A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution, Acta Mater., 61 (2013) 2102–2112.

    Article  Google Scholar 

  2. A.L. Greer, Metallic Glasses, Science, 267 (1995) 1947–1953.

    Article  Google Scholar 

  3. M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nat. Mater., 10 (2011) 123–128.

    Article  Google Scholar 

  4. J.J. Lewandowski, A.L. Greer, Temperature rise at shear bands in metallic glasses, Nat. Mater., 5 (2006) 15–18.

    Article  Google Scholar 

  5. M.Q. Jiang, L.H. Dai, On the origin of shear banding instability in metallic glasses, J. Mech. Phys. Solids, 57 (2009) 1267–1292.

    Article  Google Scholar 

  6. J.W. Qiao, S. Wang, Y. Zhang, P.K. Liaw, G.L. Chen, Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification, Appl. Phys. Lett., 94 (2009) 151905.

    Article  Google Scholar 

  7. J. Schroers, Processing of bulk metallic glass, Adv Mater, 22 (2010) 1566–1597.

    Article  Google Scholar 

  8. L.Y. Chen, Z.D. Fu, G.Q. Zhang, X.P. Hao, Q.K. Jiang, X.D. Wang, Q.P. Cao, H. Franz, Y.G. Liu, H.S. Xie, S.L. Zhang, B.Y. Wang, Y.W. Zeng, J.Z. Jiang, New class of plastic bulk metallic glass, Phys. Rev. Lett., 100 (2008) 075501.

    Article  Google Scholar 

  9. J.J. Lewandowski, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett., 85 (2005) 77–87.

    Article  Google Scholar 

  10. W.H. Wang, Elastic moduli and behaviors of metallic glasses, J. Non-Cryst. Solids, 351 (2005) 1481–1485.

    Article  Google Scholar 

  11. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials, Nat. Mater., 10 (2011) 823–837.

    Article  Google Scholar 

  12. B.A. Sun, J. Tan, S. Pauly, U. Kuhn, J. Eckert, Stable fracture of a malleable Zr-based bulk metallic glass, J. Appl. Phys., 112 (2012) 103533.

    Article  Google Scholar 

  13. Y.H. Liu, G. Wang, M.X. Pan, P. Yu, D.Q. Zhao, W.H. Wang, Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity, J. Mater. Res., 22 (2007) 869–875.

    Article  Google Scholar 

  14. Y.Q. Cheng, H.W. Sheng, E. Ma, Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys, Phys. Rev. B, 78 (2008).

    Google Scholar 

  15. W. Qin, J. Li, H. Kou, X. Gu, X. Xue, L. Zhou, Effects of alloy addition on the improvement of glass forming ability and plasticity of Mg-Cu-Tb bulk metallic glass, Intermetallics, 17 (2009) 253–255.

    Article  Google Scholar 

  16. B. Chen, Y. Li, M. Yi, R. Li, S. Pang, H. Wang, T. Zhang, Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting, Scr. Mater., 66 (2012) 1057–1060.

    Article  Google Scholar 

  17. C.J. Li, J. Tan, G. Wang, J. Bednarcík, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, J. Eckert, Enhanced strength and transformation-induced plasticity in rapidly solidified Zr-Co-(Al) alloys, Scr. Mater., 68 (2013) 897–900.

    Article  Google Scholar 

  18. C.J. Li, J. Tan, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, J. Eckert, On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy, Intermetallics, 35 (2013) 116–119.

    Article  Google Scholar 

  19. J. Tan, Y. Zhang, B.A. Sun, M. Stoica, C.J. Li, K.K. Song, U. Kühn, F.S. Pan, J. Eckert, Correlation between internal states and plasticity in bulk metallic glass, Appl. Phys. Lett., 98 (2011) 151906.

    Article  Google Scholar 

  20. B.A. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass, Acta Mater., 60 (2012) 4160–4171.

    Article  Google Scholar 

  21. B.A. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, Corrigendum to: “Serrated flow and stick—slip deformation dynamics in the presence of shear band interaction in a Zr-based bulk metallic glass” [Acta Mater. 60 (2012) 4160], Acta Mater., 61 (2013) 2281.

    Article  Google Scholar 

  22. K.K. Song, S. Pauly, B.A. Sun, J. Tan, M. Stoica, U. Kuhn, J. Eckert, Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites, AIP Advances, 3 (2013) 012116.

    Article  Google Scholar 

  23. K.K. Song, S. Pauly, B.A. Sun, Y. Zhang, J. Tan, U. Kühn, M. Stoica, J. Eckert, Formation of Cu-Zr-Al-Er bulk metallic glass composites with enhanced deformability, Intermetallics, 30 (2012) 132–138.

    Article  Google Scholar 

  24. J. Tan, F.S. Pan, Y. Zhang, B.A. Sun, J. He, N. Zheng, M. Stoica, U. Kühn, J. Eckert, Formation of Zr-Co-Al bulk metallic glasses with high strength and large plasticity, Intermetallics, 31 (2012) 282–286.

    Article  Google Scholar 

  25. J. Tan, Y. Zhang, M. Stoica, U. Kühn, N. Mattern, F.S. Pan, J. Eckert, Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass, Intermetallics, 19 (2011) 567–571.

    Article  Google Scholar 

  26. J. Tan, F.S. Pan, Y. Zhang, Z. Wang, M. Stoica, B.A. Sun, U. Kühn, J. Eckert, Effect of Fe addition on glass forming ability and mechanical properties in Zr-Co-Al-(Fe) bulk metallic glasses, Mater. Sci. Eng., A, 539 (2012) 124–127.

    Article  Google Scholar 

  27. J. Tan, F.S. Pan, L.J. Li, J.F. Wang, J. Eckert, Effect of Fe on crystallization process of Zr-Co-Al-(Fe) bulk metallic glasses, Mater. Sci. Forum, 745–746 (2013) 734–739.

    Article  Google Scholar 

  28. B. Yang, C.T. Liu, T.G. Nieh, Unified equation for the strength of bulk metallic glasses, Appl. Phys. Lett., 88 (2006) 221911.

    Article  Google Scholar 

  29. Y.H. Liu, C.T. Liu, W.H. Wang, A. Inoue, T. Sakurai, M.W. Chen, Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength, Phys. Rev. Lett., 103 (2009) 065504.

    Article  Google Scholar 

  30. J. Fornell, A. Concustell, S. Suriñach, W.H. Li, N. Cuadrado, A. Gebert, M.D. Bar, J. Sort, Yielding and intrinsic plasticity of Ti-Zr-Ni-Cu-Be bulk metallic glass, Int. J. Plast, 25 (2009) 1540–1559.

    Article  Google Scholar 

  31. A.S. Argon, Plastic deformation in metallic glasses, Acta Metall., 27 (1979) 47–58.

    Article  Google Scholar 

  32. F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall., 25 (1977) 407–415.

    Article  Google Scholar 

  33. P.S. Steif, F. Spaepen, J.W. Hutchinson, Strain localization in amorphous metals, Acta Metall., 30 (1982) 447–455.

    Article  Google Scholar 

  34. M.H. Cohen, D. Turnbull, Molecular Transport in Liquids and Glasses, J. Chem. Phys., 31 (1959) 1164–1169.

    Article  Google Scholar 

  35. D. Turnbull, M.H. Cohen, Free-Volume Model of the Amorphous Phase: Glass Transition, J. Chem. Phys., 34 (1961) 120–125.

    Article  Google Scholar 

  36. M.H. Cohen, D. Turnbull, Metastability of Amorphous Structures, Nature, 203 (1964) 964.

    Article  Google Scholar 

  37. D. Turnbull, Under What Conditions Can a Glass Be Formed, Contemp. Phys., 10 (1969) 473.

    Article  Google Scholar 

  38. D. Turnbull, M.H. Cohen, On the Free-Volume Model of the Liquid-Glass Transition, J. Chem. Phys., 52 (1970) 3038–3041.

    Article  Google Scholar 

  39. P. Chaudhari, D. Turnbull, Structure and Properties of Metallic Glasses, Science, 199 (1978) 11–21.

    Article  Google Scholar 

  40. M.H. Cohen, G.S. Grest, Liquid-glass transition, a free-volume approach, Phys. Rev. B, 20 (1979) 1077.

    Article  Google Scholar 

  41. A. van den Beukel, J. Sietsma, The glass transition as a free volume related kinetic phenomenon, Acta Metall. Mater., 38 (1990) 383–389.

    Article  Google Scholar 

  42. O. Haruyama, Thermodynamic approach to free volume kinetics during isothermal relaxation in bulk Pd-Cu-Ni-P20 glasses, Intermetallics, 15 (2007) 659–662.

    Article  Google Scholar 

  43. O. Haruyama, A. Inoue, Free volume kinetics during sub-T-g structural relaxation of a bulk Pd40Ni40P20 metallic glass, Appl. Phys. Lett., 88 (2006) 131906.

    Article  Google Scholar 

  44. C. Nagel, K. Rätzke, E. Schmidtke, J. Wolff, U. Geyer, F. Faupel, Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid, Phys. Rev. B, 57 (1998) 10224–10227.

    Article  Google Scholar 

  45. J.F. Wang, L. Liu, J.Z. Xiao, T. Zhang, B.Y. Wang, C.L. Zhou, W. Long, Ageing behaviour of Pd40Cu30Ni10P20 bulk metallic glass during long-time isothermal annealing, J. Phys. D: Appl. Phys., 38 (2005) 946.

    Article  Google Scholar 

  46. Q. Hu, X.-R. Zeng, M.W. Fu, Characteristic free volume change of bulk metallic glasses, J. Appl. Phys., 111 (2012) 083523–083529.

    Article  Google Scholar 

  47. K.S. Lee, J.H. Lee, J. Eckert, On the structural relaxation of bulk metallic glass under warm deformation, Intermetallics, 17 (2009) 222–226.

    Article  Google Scholar 

  48. A. Slipenyuk, J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass, Scr. Mater., 50 (2004) 39–44.

    Article  Google Scholar 

  49. R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater., 10 (2011) 817–822.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Tan, J., Li, C.J., Jiang, Y.H., Zhou, R., Eckert, J. (2013). Correlation Between Internal States and Strength in Bulk Metallic Glass. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_394

Download citation

Publish with us

Policies and ethics