Skip to main content

Magnetic, Structural and Mechanical Behavior of Transitional Bulk Nanostructured Al Alloy

  • Conference paper
ICAA13 Pittsburgh

Abstract

Mechanically alloyed powders synthesized by high energy rate ball milling were consolidated to produce bulk polycrystalline Al-50 at. % Fe alloy. Consolidation was achieved by cold compaction and sintering, while annealing was done to obtain an ordered structure. Annealed samples were deformed plastically by a range of compression stresses. Combination of characterization techniques like x-ray diffraction, transmission electron microscopy, vibrating sample magnetometry and Vicker’s micro hardness measurement were utilized to examine different properties. Annealed sample exhibited ordered and non magnetic phase while deformation induced samples showed simultaneous transition to both disorder and ferromagnetism, the transitional alloy at intermediate state possessed partial disorder and low magnetization. The long range order and lattice expansion contribute to the increase in magnetism at low compression stresses while it is only due to the lattice expansion at higher stresses. The order to disorder transition can be assessed by micro hardness measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jiles, D. Introduction to Magnetism and Magnetic Materials; Chapman and Hall: London, U.K., 1991, 269–278.

    Book  Google Scholar 

  2. Omori, T.; Suzuki, H.; Sampei, T.; Yako, T.; Kanero, T. Magnetic properties of 1%Al-iron and its applications. J. Appl. Phys. 1991, 69 (8), 5927–5929.

    Article  Google Scholar 

  3. Sugihara, M. On the effect of heat treatment in a magnetic field on magnetic properties of iron-aluminum alloys. J. Phy. Soc. Japan 1960, 15 (7), 1456–1460.

    Article  Google Scholar 

  4. Lall, C. Soft Magnetism, Fundamentals for Powder Metallurgy and Metal Injection Molding, Monographs in P/M Series No. 2, 1992, Metal Powder Industry Federation, New Jersey.

    Google Scholar 

  5. Dieter G.E. Mechanical Metallurgy; 3rd Ed.; McGraw Hill: 1986.

    Google Scholar 

  6. German R.M. Powder Metallurgy Science; 2nd Ed.; Metal Powder Industries Federation: Princeton, New Jersey, 1994, 562–567.

    Google Scholar 

  7. Herrmann, J.; Inden, G.; Sautoff, G. Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures. Acta Materialia 2003, 51, 2847–2857.

    Article  Google Scholar 

  8. Herrmann, J.; Inden, G.; Sautoff, J. Deformation behaviour of iron-rich iron-aluminum alloys at high temperatures. Acta Materialia 2003, 51, 3233–3242.

    Article  Google Scholar 

  9. Taylor A and Jones R M 1958 J. Phys. Chem. Solids 6, 16.

    Article  Google Scholar 

  10. Varin R A, Czujko T, Bystrzycki J and Calka A 2002 Mater. Sci. Eng. A 329, 213.

    Article  Google Scholar 

  11. Sort J, Concustell A, Menéndez E, Suriñach S, Rao K V, Deevi S C, Baró M D and Nogués J 2006 Adv. Mater. 18, 1717.

    Article  Google Scholar 

  12. Huffman G P and Fisher R M 1967 J. Appl. Phys. 38, 735.

    Article  Google Scholar 

  13. Yang Y, Baker I and Martin P 1999 Phil. Mag. B 79, 449.

    Article  Google Scholar 

  14. Jirásková Y, Schneeweiss O, Milicka K, Svoboda M and Procházka I 2000 Mater. Sci. Eng. A 293, 215.

    Article  Google Scholar 

  15. Yelsukov E P, Voronina E V and Barinov V A 1992 J. Magn. Magn. Mater. 115, 271.

    Article  Google Scholar 

  16. Amils X, Nogués J, Suriñach S, Baró M D and Muñoz J S 1998 IEEE Trans. Magn. 34, 1129.

    Article  Google Scholar 

  17. Hernando A, Amils X, Nogués J, Suriñach S, Baró M D and Ibarra M R 1998 Phys. Rev. B 58, R11864.

    Article  Google Scholar 

  18. Fassbender J, Liedke M O, Strache T, Möller W, Menéndez E, Sort J, Rao K V, Deevi S C and Nogués J 2008 Phys. Rev. B 77, 174430.

    Article  Google Scholar 

  19. Beck P A 1971 Metall. Trans. 2, 2015.

    Article  Google Scholar 

  20. Wertheim G K, Jaccarino V, Wernick J H and Buchanan D N E 1964 Phys. Rev. Lett. 12, 24.

    Article  Google Scholar 

  21. Takahashi S 1986 J. Magn. Magn. Mater. 54–57, 1065.

    Article  Google Scholar 

  22. Fujii M, Saito K, Wakayama K, Kawasaki M, Yoshioka T, Isshiki T, Nishio N and Shiojiri M 1999 Phil. Mag. A 79, 2013.

    Article  Google Scholar 

  23. Smirnov A V, Shelton W A and Johnson D D 2005 Phys. Rev. B 71, 064408.

    Article  Google Scholar 

  24. Apiñaniz E, Plazaola F and Garitaonandia J S 2003 Eur. Phys. J. B 31, 167.

    Article  Google Scholar 

  25. Nogués J et al 2006 Phys. Rev. B 74, 024407.

    Article  Google Scholar 

  26. Young R A 1995 The Rietveld Method (Oxford: International Union of Crystallography, University Press).

    Google Scholar 

  27. Warren B E and Averbach B L 1950 J. Appl. Phys. 21, 595.

    Article  Google Scholar 

  28. Lutterotti L and Scardi P 1990 J. Appl. Crystallogr. 23, 246.

    Article  Google Scholar 

  29. Enzo S, Fagherazzi G, Benedetti A and Polizzi S 1988 J. Appl. Crystallogr. 21, 536.

    Article  Google Scholar 

  30. Chikazumi S. Physics of magnetism. Malabar: Wiley; 1964. p. 277.

    Google Scholar 

  31. Schlomann E. J. Appl Phys 1967; 38: 5027–34.

    Article  Google Scholar 

  32. Sebastian V, Lakshmi N, Venugopal K Intermetallics. (2007), xx, p. 1–7.

    Google Scholar 

  33. Run-Hua Fan, Jia-Tao Sun, Hong-Yu Gong, et al. Powder Tech. 149 (2005), p.121–126.

    Article  Google Scholar 

  34. Amils X, Nogués J, Suriñach S, Muñoz J S, Lutterotti L, Gialanella S and Baró M D 1999 Nanostruct. Mater. 11, 689.

    Article  Google Scholar 

  35. Gialanella S, Amils X, Baró M D, Delcroix P, Le Caër G, Lutterotti L and Suriñach S 1998 Acta Mater. 46, 3305.35

    Article  Google Scholar 

  36. Morris D G, Amils X, Nogués J, Suriñach S, Baró M D and Muñoz-Morris M A 2002 Int. J. Non-Equilib. Process. 11, 379.36

    Google Scholar 

  37. Apiñaniz E, Plazaola F and Garitaonandia J S 2004 J. Magn. Magn. Mater. 272–276, 794.

    Article  Google Scholar 

  38. Amils X, Nogués J, Suriñach S, Muñoz J S, Lutterotti L and Baró M D 1999 Nanostruct. Mater. 12, 801.

    Article  Google Scholar 

  39. Meyers M A, Mishra A and Benson D J 2006 Prog. Mater. Sci. 51, 427.

    Article  Google Scholar 

  40. Yang Y and Baker I 1998 Intermetallics 6, 167.

    Article  Google Scholar 

  41. Amils X, Nogués J, Suriñach S, Baró M D, Morris-Muñoz M A and Morris D G 2000 Intermetallics 8, 805.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Hegde, M.M.R., Surendranathan, A.O. (2012). Magnetic, Structural and Mechanical Behavior of Transitional Bulk Nanostructured Al Alloy. In: Weiland, H., Rollett, A.D., Cassada, W.A. (eds) ICAA13 Pittsburgh. Springer, Cham. https://doi.org/10.1007/978-3-319-48761-8_146

Download citation

Publish with us

Policies and ethics