Skip to main content

Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers

  • Chapter
  • First Online:
Provably Correct Systems

Abstract

The interplay between discrete and continuous dynamical models is discussed, and a systematic approach to developing and combining these models together is outlined. The combination is done with linking predicates that define refinement relations between the models. As a case study, we build an abstract, discr spatial model and a concrete, continuous dynamic model for traffic manoeuvrers of multiple vehicles on highways. In the discrete model we show the safety (collision freedom) of distance keeping and lane-change manoeuvrers using events and actions to specify state transitions. By linking the discrete and continuous model via suitable predicates that express the discrete events and actions as distances and set-points in the continuous model, the safety carries over to the concrete model.

This research was partially supported by the German Research Foundation (DFG) in the Transregional Collaborative Research Center (SFB/TR 14) AVACS(www.avacs.org). This chapter is a revised and extended version of the conference paper [35].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Althoff, M., Stursberg, O., Buss, M.: Safety assessment of autonomous cars using verification techniques. In: American Control Conference (ACC) 2007, pp. 4154–4159. IEEE (2007)

    Google Scholar 

  2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ames, A.D., Cousineau, E.A., Powell, M.J.: Dynamically stable bipedal robotic walking with nao via human-inspired hybrid zero dynamics. In: HSCC 2012, pp. 135–144. ACM (2012)

    Google Scholar 

  5. Arechiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guarantee closed-loop system properties. In: American Control Conference (ACC) 2012, pp. 3573–3580. IEEE (2012)

    Google Scholar 

  6. Damm, W., Ihlemann, C., Sofroni-Stokkermans, V.: PTIME parametric verification of safety properties for reasonable linear hybrid systems. Math. Comput. Sci. 5(4), 469–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems: a case study on concurrency and coupling. In: HSCC 2014, pp. 145–150. ACM (2014)

    Google Scholar 

  8. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge University Press, New York (1998)

    Book  MATH  Google Scholar 

  9. Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z: Foundations and Advanced Applications. Springer, London (2014)

    Google Scholar 

  10. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to hybrid systems. In: Cha, S.D., Choi, J., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)

    Google Scholar 

  11. Fränzle, M., Herde, C.: HySAT: an efficient proof engine for bounded model checking of hybrid systems. Form. Methods Syst. Des. 30(3), 179–198 (2007)

    Article  MATH  Google Scholar 

  12. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. STTT 10(3), 263–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frehse, G., Guernic, C., Donzé, A., Cotton, S., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)

    Google Scholar 

  14. Frehse, G., Kateja, R., Guernic, C.L.: Flowpipe approximation and clustering in space-time. HSCC 2014, 203–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds).: Hybrid Systems. LNCS, vol. 736, Springer, Heidelberg (1993)

    Google Scholar 

  16. Grumberg, O.: Abstraction and reduction in model checking. In: Schwichtenberg, H., SteinbrĂ¼ggen, R. (eds.) Proof and System-Reliabilty. Nato Science Series II. Math., Physics and Chemistry, vol. 62, pp. 213–260. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  17. Habets, L., Collins, P., van Schuppen, J.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. Control 51(6), 938–948 (2006)

    Article  MathSciNet  Google Scholar 

  18. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE (1996)

    Google Scholar 

  19. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. STTT 1(1–2), 110–122 (1997)

    Article  MATH  Google Scholar 

  20. Hereid, A., Kolathaya, S., Jones, M.S., Van Why, J., Hurst, J.W., Ames, A.D.: Dynamic Multi-domain Bipedal Walking with Atrias Through Slip Based Human-Inspired Control. HSCC 2014. pp. 263–272, ACM (2014)

    Google Scholar 

  21. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013)

    Google Scholar 

  22. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)

    Google Scholar 

  23. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, London (1998)

    Google Scholar 

  24. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. HSCC 2005, 25–53 (2005)

    Google Scholar 

  25. Linker, S.: Proofs for traffic safety: combining diagrams and logic. Ph.D thesis, Dept. of. Comp. Sci, Univ. of Oldenburg (2015)

    Google Scholar 

  26. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. Logical Methods Comput. Sci. 11(3), 2015. See: https://arxiv.org/abs/1504.06986

  27. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M.J., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)

    Google Scholar 

  28. Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated vehicles. IEEE Trans. Autom. Control 43(4), 522–539 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata revisited. HSCC 2001, 403–417 (2001)

    Google Scholar 

  30. MathWorks. Stateflow (1995)

    Google Scholar 

  31. Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of hybrid systems. In: Proceedings IFAD Conference on Analysis and Design of Hybrid Systems, pp. 389–394. St. Malo, France (2003)

    Google Scholar 

  32. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems based on l-complete approximations. Discret. Event Dyn. Syst. 12, 83–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18(2), 10–19 (1985)

    Article  Google Scholar 

  34. Nadjm-Tehrani, S., Strömberg, J.: From physical modelling to compositional models of hybrid systems. In: Langmaack, H., de Roever, W.P., Vytopil, J. (eds.) Formal Techniques in Real-Time and Fault-Tolerant Systems, Third International Symposium Organized Jointly with the Working Group Provably Correct Systems – ProCoS, vol. 863 of LNCS, pp. 583–604. Springer (1994)

    Google Scholar 

  35. Olderog, E.-R., Ravn, A., Wisniewski, R.: Linking spatial and dynamic models for traffic maneuvers. In: 54th IEEE Conference on Decision and Control (CDC), 8 pp. IEEE (2015)

    Google Scholar 

  36. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Spinger, Heidelberg (2010)

    Book  MATH  Google Scholar 

  37. Rajamani, R.: Vehicle Dynamics and Control. Mechanical engineering series. Springer Science, New York (2006)

    MATH  Google Scholar 

  38. Rajhans, A., Krogh, B.H.: Compositional heterogeneous abstraction. In: HSCC 2013, pp. 253–262. ACM (2013)

    Google Scholar 

  39. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings 3rd International Conference Knowledge Representation and Reasoning (1992)

    Google Scholar 

  40. Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 463–478. Springer, Heidelberg (2005)

    Google Scholar 

  41. Shao, Z., Liu, J.: Spatio-temporal hybrid automata for cyber-physical systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 337–354. Springer, Heidelberg (2005)

    Google Scholar 

  42. Sreenath, K., Hill Jr., C.R., Kumar, V.: A partially observable hybrid system model for bipedal locomotion for adapting to terrain variations. In: HSCC 2013, pp. 137–142. ACM (2013)

    Google Scholar 

  43. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I., Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Netherlands (2007)

    Chapter  Google Scholar 

  44. Varaija, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom. Control AC 38(2), 195–207 (1993)

    Article  MathSciNet  Google Scholar 

  45. Werling, M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling traffic in urban scenarios. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 168–173. Eindhoven, NL (2008)

    Google Scholar 

  46. Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  47. Zabat, M., Stabile, N., Farascaroli, S., Browand, F.: The aerodynamic performance of platoons: a final report. UC Berkeley (1995). http://escholarship.org/uc/item/8ph187fw

  48. Zabczyk, J.: Mathematical Control Theory – An Introduction. Birkhäuser (2008)

    Google Scholar 

  49. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Programming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207–281. Springer, Heidelberg (2013)

    Google Scholar 

  50. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. IPL 40(5), 269–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for bertha – A local, continuous method. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, June 8-11, 2014, pp. 450–457 (2014)

    Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders P. Ravn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Olderog, ER., Ravn, A.P., Wisniewski, R. (2017). Linking Discrete and Continuous Models, Applied to Traffic Manoeuvrers. In: Hinchey, M., Bowen, J., Olderog, ER. (eds) Provably Correct Systems. NASA Monographs in Systems and Software Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-48628-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48628-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48627-7

  • Online ISBN: 978-3-319-48628-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics