Skip to main content

Pathological Roles of Oxidative Stress (OS) in Diseases Related to Female Reproductive System

  • Chapter
  • First Online:
Oxidative Stress in Human Reproduction

Abstract

Nowadays, approximately 14 % of women in reproductive age have difficulties to conceive in the United States [1]. Several strategies have been utilized to overcome infertility, including assisted reproductive technology (ART). Although in vitro fertilization (IVF) is still the most commonly used technique, the number of ART cycles involving intracytoplasmic sperm injection (ICSI) has markedly increased [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sunderam S et al (2015) Assisted reproductive technology surveillance – United States, 2013. MMWR Surveill Summ 64(11):1–25

    Article  Google Scholar 

  2. Sunderam S et al (2012) Assisted reproductive technology surveillance – United States, 2009. MMWR Surveill Summ 61(7):1–23

    PubMed  Google Scholar 

  3. Benjamin D, Sharma RK, Moazzam A, Agarwal A (2012) Methods for the detection of ROS in human sperm samples. Studies on men's health and fertility. Humana, New York, pp 257–274

    Book  Google Scholar 

  4. Min J et al (2006) Paraoxonase gene polymorphism and vitamin levels during pregnancy: relationship with maternal oxidative stress and neonatal birthweights. Reprod Toxicol 22(3):418–424

    Article  CAS  PubMed  Google Scholar 

  5. Min J et al (2009) Effect of oxidative stress on birth sizes: consideration of window from mid pregnancy to delivery. Placenta 30(5):418–423

    Article  CAS  PubMed  Google Scholar 

  6. Clerici G et al (2012) Oxidative stress in pathological pregnancies. J Obstet Gynaecol 32(2):124–127

    Article  CAS  PubMed  Google Scholar 

  7. Verit FF, Erel O (2008) Oxidative stress in nonobese women with polycystic ovary syndrome: correlations with endocrine and screening parameters. Gynecol Obstet Invest 65(4):233–239

    Article  CAS  PubMed  Google Scholar 

  8. Karadeniz M et al (2008) Oxidative stress markers in young patients with polycystic ovary syndrome, the relationship between insulin resistances. Exp Clin Endocrinol Diab 116(4):231–235

    Article  CAS  Google Scholar 

  9. Costello MF et al (2007) Metformin versus oral contraceptive pill in polycystic ovary syndrome: a cochrane review. Hum Reprod 22(5):1200–1209

    Article  CAS  PubMed  Google Scholar 

  10. Khan KA, Stas S, Kurukulasuriya LR (2006) Polycystic ovarian syndrome. J Cardiometab Syndr 1(2):125–132

    Article  PubMed  Google Scholar 

  11. Tandulwadkar SR, Lodha PA, Mangeshikar NT (2014) Obstetric complications in women with IVF conceived pregnancies and polycystic ovarian syndrome. J Hum Reprod Sci 7(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  12. Teissier M et al (2000) Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod 15(12):2471–2477

    Article  CAS  PubMed  Google Scholar 

  13. Cohen Y et al (2004) Spindle imaging: a new marker for optimal timing of ICSI? Hum Reprod 19(3):649–654

    Article  CAS  PubMed  Google Scholar 

  14. De Santis L et al (2005) Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online 11(1):36–42

    Article  PubMed  Google Scholar 

  15. Chattopadhayay R et al (2010) Effect of follicular fluid oxidative stress on meiotic spindle formation in infertile women with polycystic ovarian syndrome. Gynecol Obstet Invest 69(3):197–202

    Article  CAS  PubMed  Google Scholar 

  16. Wang W et al (2001) Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination. Hum Reprod 16(7):1464–1468

    Article  CAS  PubMed  Google Scholar 

  17. Rienzi L et al (2005) Meiotic spindle visualization in living human oocytes. Reprod Biomed Online 10(2):192–198

    Article  PubMed  Google Scholar 

  18. Moon JH et al (2003) Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum Reprod 18(4):817–820

    Article  CAS  PubMed  Google Scholar 

  19. Rajani S et al (2012) Assessment of oocyte quality in polycystic ovarian syndrome and endometriosis by spindle imaging and reactive oxygen species levels in follicular fluid and its relationship with IVF-ET outcome. J Hum Reprod Sci 5(2):187

    Article  PubMed  PubMed Central  Google Scholar 

  20. Das S et al (2006) Reactive oxygen species level in follicular fluid – embryo quality marker in IVF? Hum Reprod 21(9):2403–2407

    Article  CAS  PubMed  Google Scholar 

  21. Kaya C et al (2009) Advanced oxidation protein products are increased in women with polycystic ovary syndrome: relationship with traditional and nontraditional cardiovascular risk factors in patients with polycystic ovary syndrome. Fertil Steril 92(4):1372–1377

    Article  CAS  PubMed  Google Scholar 

  22. Boutzios G et al (2013) Polycystic ovary syndrome offspring display increased oxidative stress markers comparable to gestational diabetes offspring. Fertil Steril 99(3):943–950

    Article  CAS  PubMed  Google Scholar 

  23. Bierhaus A et al (1997) Advanced glycation end product-induced activation of NF-κB is suppressed by α-lipoic acid in cultured endothelial cells. Diabetes 46(9):1481–1490

    Article  CAS  PubMed  Google Scholar 

  24. Descamps-Latscha B et al (2005) Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients. Am J Kidney Dis 45(1):39–47

    Article  CAS  PubMed  Google Scholar 

  25. Seleem AK et al (2014) Superoxide dismutase in polycystic ovary syndrome patients undergoing intracytoplasmic sperm injection. J Assist Reprod Genet 31(4):499–504

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lopes HF et al (2003) DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 41(3):422–430

    Article  CAS  PubMed  Google Scholar 

  27. Asemi Z et al (2013) A randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in gestational diabetes. Nutrition 29(4):619–624

    Article  CAS  PubMed  Google Scholar 

  28. Asemi Z et al (2014) Effects of DASH diet on lipid profiles and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: a randomized clinical trial. Nutrition 30(11-12):1287–1293

    Article  CAS  PubMed  Google Scholar 

  29. Ishii T et al (2014) Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion. Redox Biol 2:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seet RC-S et al (2010) Markers of oxidative damage are not elevated in otherwise healthy individuals with the metabolic syndrome. Diabetes Care 33(5):1140–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burton GJ, Hempstock J, Jauniaux E (2003) Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online 6(1):84–96

    Article  PubMed  Google Scholar 

  32. Şimşek M et al (1998) Blood plasma levels of lipoperoxides, glutathione peroxidase, beta carotene, vitamin A and E in women with habitual abortion. Cell Biochem Funct 16(4):227–231

    Article  PubMed  Google Scholar 

  33. Miller H et al (2000) Glutathione levels and miscarriage. Fertil Steril 74(6):1257–1258

    Article  CAS  PubMed  Google Scholar 

  34. Gao H-J et al (2012) Endoplasmic reticulum stress induced by oxidative stress in decidual cells: a possible mechanism of early pregnancy loss. Mol Biol Rep 39(9):9179–9186

    Article  CAS  PubMed  Google Scholar 

  35. Kwak JY et al (1999) Immunopathology of the implantation site utilizing monoclonal antibodies to natural killer cells in women with recurrent pregnancy losses. Am J Reprod Immunol 41(1):91–98

    Article  CAS  PubMed  Google Scholar 

  36. Plaisier M et al (2009) Decidual vascularization and the expression of angiogenic growth factors and proteases in first trimester spontaneous abortions. Hum Reprod 24(1):185–197

    Article  CAS  PubMed  Google Scholar 

  37. Quenby S et al (2009) Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod 24(1):45–54

    Article  CAS  PubMed  Google Scholar 

  38. Hempstock J et al (2003) The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol 34(12):1265–1275

    Article  CAS  PubMed  Google Scholar 

  39. Kwak JY et al (1995) Up-regulated expression of CD56+, CD56+/CD16+, and CD19+ cells in peripheral blood lymphocytes in women with recurrent pregnancy losses. Clin Immunol Newslett 15(2):18–22

    Article  Google Scholar 

  40. Lee SK et al (2013) Determination of clinical cellular immune markers in women with recurrent pregnancy loss. Am J Reprod Immunol 70(5):398–411

    CAS  PubMed  Google Scholar 

  41. Kwak‐Kim J et al (2003) Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum Reprod 18(4):767–773

    Article  PubMed  CAS  Google Scholar 

  42. Matsubayashi H et al (2001) Increased natural killer‐cell activity is associated with infertile women. Am J Reprod Immunol 46(5):318–322

    Article  CAS  PubMed  Google Scholar 

  43. Talukdar A et al (2015) Effect of coenzyme Q10 on Th1/Th2 paradigm in females with idiopathic recurrent pregnancy loss. Am J Reprod Immunol 74(2):169–180

    Article  CAS  PubMed  Google Scholar 

  44. Sánchez-Aranguren LC et al (2014) Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol 5:372

    Article  PubMed  PubMed Central  Google Scholar 

  45. Matsubara K et al (2010) Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J Obstet Gynaecol Res 36(2):239–247

    Article  CAS  PubMed  Google Scholar 

  46. Burton GJ, Yung H-W (2011) Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens 1(1):72–78

    PubMed  PubMed Central  Google Scholar 

  47. Webster R, Roberts V, Myatt L (2008) Protein nitration in placenta–functional significance. Placenta 29(12):985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wallace K et al (2014) CD4+ T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia. Hypertension 64(5):1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalyanaraman B (2013) Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol 1(1):244–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Palmer RM, Ashton D, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333(6174):664–666

    Article  CAS  PubMed  Google Scholar 

  51. Qian J, Fulton D (2013) Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 4:347

    Article  PubMed  PubMed Central  Google Scholar 

  52. Many A, Hubel C, Roberts J (1996) Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol 174(1):288–291

    Article  CAS  PubMed  Google Scholar 

  53. Farrow KN et al (2008) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295(6):L979–L987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Cindrova-Davies T (2014) The therapeutic potential of antioxidants, ER chaperones, NO and H2S donors, and statins for treatment of preeclampsia. Front Pharmacol 5:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mishra GD, Kuh D (2012) Health symptoms during midlife in relation to menopausal transition: British prospective cohort study. BMJ 344

    Google Scholar 

  56. Te Velde E et al (1998) Developmental and endocrine aspects of normal ovarian aging. Mol Cell Endocrinol 145(1):67–73

    Article  Google Scholar 

  57. Su HI, Freeman EW (2009) Hormone changes associated with the menopausal transition. Minerva Ginecol 61(6):483–489

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nathan L, Chaudhuri G (1998) Antioxidant and prooxidant actions of estrogens: potential physiological and clinical implications. Semin Reprod Endocrinol 16(4):309–314

    Article  CAS  PubMed  Google Scholar 

  59. Doshi SB, Agarwal A (2013) The role of oxidative stress in menopause. J Midlife Health 4(3):140–146

    PubMed  PubMed Central  Google Scholar 

  60. Abu Hashim H (2014) Potential role of aromatase inhibitors in the treatment of endometriosis. Int J Womens Health 6:671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Giudice LC (2010) Clinical practice. Endometriosis. N Engl J Med 362(25):2389–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Macer ML, Taylor HS (2012) Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin North Am 39(4):535–549

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wolfler MM et al (2011) Two-dimensional gel electrophoresis in peritoneal fluid samples identifies differential protein regulation in patients suffering from peritoneal or ovarian endometriosis. Fertil Steril 95(8):2764–2768

    Article  PubMed  CAS  Google Scholar 

  64. Soave I et al (2015) Environment and endometriosis: a toxic relationship. Eur Rev Med Pharmacol Sci 19(11):1964–1972

    CAS  PubMed  Google Scholar 

  65. Guo SW, Wang Y (2006) The prevalence of endometriosis in women with chronic pelvic pain. Gynecol Obstet Invest 62(3):121–130

    Article  PubMed  Google Scholar 

  66. Andrade SS et al (2013) 17beta-Estradiol and steady-state concentrations of H2O2: antiapoptotic effect in endometrial cells from patients with endometriosis. Free Radic Biol Med 60:63–72

    Article  CAS  PubMed  Google Scholar 

  67. Jana SK et al (2013) 1H NMR based targeted metabolite profiling for understanding the complex relationship connecting oxidative stress with endometriosis. Biomed Res Int 2013:329058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ferguson BR, Bennington JL, Haber SL (1969) Histochemistry of mucosubstances and histology of mixed mullerian pelvic lymph node glandular inclusions. Evidence for histogenesis by mullerian metaplasia of coelomic epithelium. Obstet Gynecol 33(5):617–625

    CAS  PubMed  Google Scholar 

  69. Halme J et al (1984) Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 64(2):151–154

    CAS  PubMed  Google Scholar 

  70. Jeung IC et al (2015) Effect of helixor A on natural killer cell activity in endometriosis. Int J Med Sci 12(1):42–47

    Article  PubMed  PubMed Central  Google Scholar 

  71. Defrere S et al (2008) Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Mol Hum Reprod 14(7):377–385

    Article  CAS  PubMed  Google Scholar 

  72. Gupta S et al (2008) Pathogenic mechanisms in endometriosis-associated infertility. Fertil Steril 90(2):247–257

    Article  CAS  PubMed  Google Scholar 

  73. Sharma I et al (2010) Role of 8-iso-prostaglandin F2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil Steril 94(1):63–70

    Article  CAS  PubMed  Google Scholar 

  74. Gupta S et al (2014) Power of proteomics in linking oxidative stress and female infertility. Biomed Res Int 2014:916212

    PubMed  PubMed Central  Google Scholar 

  75. Prieto L et al (2012) Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil Steril 98(1):126–130

    Article  CAS  PubMed  Google Scholar 

  76. Seeber BE et al (2010) The vitamin E-binding protein afamin is altered significantly in the peritoneal fluid of women with endometriosis. Fertil Steril 94(7):2923–2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wolfler MM et al (2013) Reduced hemopexin levels in peritoneal fluid of patients with endometriosis. Fertil Steril 100(3):777–781

    Article  PubMed  CAS  Google Scholar 

  78. Seo SK et al (2010) The roles of thioredoxin and thioredoxin-binding protein-2 in endometriosis. Hum Reprod 25(5):1251–1258

    Article  CAS  PubMed  Google Scholar 

  79. Lambrinoudaki IV et al (2009) Measurable serum markers of oxidative stress response in women with endometriosis. Fertil Steril 91(1):46–50

    Article  CAS  PubMed  Google Scholar 

  80. Matsuzaki S et al (2004) DNA microarray analysis of gene expression profiles in deep endometriosis using laser capture microdissection. Mol Hum Reprod 10(10):719–728

    Article  CAS  PubMed  Google Scholar 

  81. Fowler PA et al (2007) An investigation of the effects of endometriosis on the proteome of human eutopic endometrium: a heterogeneous tissue with a complex disease. Proteomics 7(1):130–142

    Article  CAS  PubMed  Google Scholar 

  82. Witko-Sarsat V et al (2003) AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int 64(1):82–91

    Article  CAS  PubMed  Google Scholar 

  83. Tamura H et al (2014) A pilot study to search possible mechanisms of ultralong gonadotropin-releasing hormone agonist therapy in IVF-ET patients with endometriosis. J Ovarian Res 7:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Nothnick WB (2011) The emerging use of aromatase inhibitors for endometriosis treatment. Reprod Biol Endocrinol 9:87

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mier-Cabrera J et al (2008) Effect of vitamins C and E supplementation on peripheral oxidative stress markers and pregnancy rate in women with endometriosis. Int J Gynaecol Obstet 100(3):252–256

    Article  CAS  PubMed  Google Scholar 

  86. International association of diabetes and pregnancy et al (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3):676–682

    Article  CAS  Google Scholar 

  87. Correa PJ et al (2014) Prediction of gestational diabetes early in pregnancy: targeting the long-term complications. Gynecol Obstet Invest 77(3):145–149

    Article  CAS  PubMed  Google Scholar 

  88. Zhu C et al (2015) Association of oxidative stress biomarkers with gestational diabetes mellitus in pregnant women: a case-control study. PLoS One 10(4), e0126490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Teede HJ et al (2011) Gestational diabetes: development of an early risk prediction tool to facilitate opportunities for prevention. Aust N Z J Obstet Gynaecol 51(6):499–504

    Article  PubMed  Google Scholar 

  90. Asemi Z et al (2013) Effects of vitamin D supplementation on glucose metabolism, lipid concentrations, inflammation, and oxidative stress in gestational diabetes: a double-blind randomized controlled clinical trial. Am J Clin Nutr 98(6):1425–1432

    Article  CAS  PubMed  Google Scholar 

  91. Abell SK et al (2015) Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci 16(6):13442–13473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shah BR, Retnakaran R, Booth GL (2008) Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care 31(8):1668–1669

    Article  PubMed  PubMed Central  Google Scholar 

  93. Buchanan TA, Xiang AH (2005) Gestational diabetes mellitus. J Clin Invest 115(3):485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lappas M et al (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15(12):3061–3100

    Article  CAS  PubMed  Google Scholar 

  95. Daci A, Elshani B, Giangiacomo B (2013) Gestational diabetes mellitus (GDM) in the Republic of Kosovo: a retrospective pilot study. Med Arch 67(2):88–90

    Article  PubMed  Google Scholar 

  96. Biri A et al (2006) Oxidant status in maternal and cord plasma and placental tissue in gestational diabetes. Placenta 27(2-3):327–332

    Article  CAS  PubMed  Google Scholar 

  97. Domellof M, Thorsdottir I, Thorstensen K (2013) Health effects of different dietary iron intakes: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr Res 57

    Google Scholar 

  98. Bowers K et al (2011) A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care 34(7):1557–1563

    Article  PubMed  PubMed Central  Google Scholar 

  99. Qiu C et al (2011) Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care 34(7):1564–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zein S, Rachidi S, Hininger-Favier I (2014) Is oxidative stress induced by iron status associated with gestational diabetes mellitus? J Trace Elem Med Biol 28(1):65–69

    Article  CAS  PubMed  Google Scholar 

  101. Asemi Z et al (2013) Favourable effects of the dietary approaches to stop hypertension diet on glucose tolerance and lipid profiles in gestational diabetes: a randomised clinical trial. Br J Nutr 109(11):2024–2030

    Article  CAS  PubMed  Google Scholar 

  102. Smith S, Pfeifer SM, Collins JA (2003) Diagnosis and management of female infertility. JAMA 290(13):1767–1770

    Article  CAS  PubMed  Google Scholar 

  103. Aboulghar MA et al (2003) Diagnosis and management of unexplained infertility: an update. Arch Gynecol Obstet 267(4):177–188

    PubMed  Google Scholar 

  104. Ruder EH et al (2008) Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update 14(4):345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang Y et al (1997) Importance of reactive oxygen species in the peritoneal fluid of women with endometriosis or idiopathic infertility. Fertil Steril 68(5):826–830

    Article  CAS  PubMed  Google Scholar 

  106. Badawy A, Baker El Nashar A, El Totongy M (2006) Clomiphene citrate plus N-acetyl cysteine versus clomiphene citrate for augmenting ovulation in the management of unexplained infertility: a randomized double-blind controlled trial. Fertil Steril 86(3):647–650

    Article  CAS  PubMed  Google Scholar 

  107. Tamura T, Picciano MF (2006) Folate and human reproduction. Am J Clin Nutr 83(5):993–1016

    CAS  PubMed  Google Scholar 

  108. Altmae S et al (2010) Variations in folate pathway genes are associated with unexplained female infertility. Fertil Steril 94(1):130–137

    Article  PubMed  CAS  Google Scholar 

  109. Yamada K et al (2005) Regulation of human methylenetetrahydrofolate reductase by phosphorylation. Proc Natl Acad Sci U S A 102(30):10454–10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Frosst P et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113

    Article  CAS  PubMed  Google Scholar 

  111. Harmon DL et al (1996) The common ‘thermolabile’ variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 89(8):571–577

    Article  CAS  PubMed  Google Scholar 

  112. Weiss N (2005) Mechanisms of increased vascular oxidant stress in hyperhomocys-teinemia and its impact on endothelial function. Curr Drug Metab 6(1):27–36

    Article  CAS  PubMed  Google Scholar 

  113. Pacchiarotti A et al (2007) The possible role of hyperhomocysteinemia on IVF outcome. J Assist Reprod Genet 24(10):459–462

    Article  PubMed  PubMed Central  Google Scholar 

  114. Attaran M et al (2000) The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med 45(5):314–320

    CAS  PubMed  Google Scholar 

  115. Pasqualotto EB et al (2004) Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril 81(4):973–976

    Article  CAS  PubMed  Google Scholar 

  116. Pekel A et al (2015) Changes of sFas and sFasL, oxidative stress markers in serum and follicular fluid of patients undergoing IVF. J Assist Reprod Genet 32(2):233–241

    Article  PubMed  Google Scholar 

  117. Sarandakou A et al (2003) Apoptosis and proliferation factors in serum and follicular fluid from women undergoing in vitro fertilization. Fertil Steril 79(3):634–636

    Article  PubMed  Google Scholar 

  118. Cicek N et al (2012) Vitamin E effect on controlled ovarian stimulation of unexplained infertile women. J Assist Reprod Genet 29(4):325–328

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, S., Ahmad, G., Tran, M., Al Hayaza, G., Kayali, Z. (2017). Pathological Roles of Oxidative Stress (OS) in Diseases Related to Female Reproductive System. In: Agarwal, A., et al. Oxidative Stress in Human Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-319-48427-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48427-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48425-9

  • Online ISBN: 978-3-319-48427-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics