Skip to main content

Filler Surface Nature, Bead, Solution Viscosity and Fibre Diameter of Electrospun Particle-Reinforced Polylactide

  • Conference paper
TMS 2016 145th Annual Meeting & Exhibition

Abstract

The effect of viscosity of agro particle reinforced polylactide (PLA) solution on the electrospun fibre diameter and bead size produced is examined. Solutions of agro waste particle reinforced PLA were made at varying filler weight fraction and these electrospun into fibres. A scanning electron microscope was used to examine the morphologies of fibres while the fibre diameters were determined using ImageJ software. Results show that solution viscosity does not affect fibre diameter when agro particle fillers are processed by a combination of mechanical, thermal and chemical treatments prior to been used as reinforcement. At lower concentration of reinforcement, beads generated from treated particles were of smaller diameter. High solution viscosity gave rise to large bead diameters for treated and untreated reinforcements. Thus, the effect of solution viscosity on fibre and bead diameters depends largely on surface nature of the agro filler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. H. Reneker et al. “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning,” J Appl Phys, 87(2000), 4531–47.

    Article  Google Scholar 

  2. A. L. Yarin, Koombhongse S., Reneker D. H. “On bending instability in electrospinning of nanofibers,” J Appl Phys,89(2001), 3018–26.

    Article  Google Scholar 

  3. A. Theron, E. Zussman, A. L. Yarin, “Electrostatic field-assisted alignment of electrospun fibers,” Nanotechnology 12(2001), 384–90.

    Article  Google Scholar 

  4. M. Bognitzki et al. “Nanostructured fibers via electrospinning,” Adv Mater 13 (2001),70–72.

    Article  Google Scholar 

  5. K. S. Athira, S. Pallab, C. Kaushik “Fabrication of Poly(Caprolactone) Nanofibers by Electrospinning,” Journal of Polymer and Biopolymer Physics Chemistry, 2(4) (2014), 62–66

    Google Scholar 

  6. A. C. MacDiarmid et al. “Electrostatically generated nanofibers of electronic polymers” Synth Met, 119 (2001), 27–30.

    Article  Google Scholar 

  7. I. D. Norris et al. “Electrostatic fabrication of ultrafine conducting fibres: polyaniline/polyethylene oxide blends,” J Synth Metals 114 (2000), 109–14.

    Article  Google Scholar 

  8. A. G. Scopelianos “Piezoelectric biomedical device,” US patent 5522879, 1996.

    Google Scholar 

  9. E. D. Boland et al. “Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning,” J Macromol Sci-Pure Appl Chem, A38(12) (2002), 1231–1243.

    Article  Google Scholar 

  10. E. Zussman, A. Theron, A. L. Yarin “Formation of nanofiber crossbars in electrospinning,” Appl Phys Lett, 82(6)(2003), 973–5.

    Article  Google Scholar 

  11. M. Bognitzki et al. “Polymer, metal, and hybrid nano and mesotubes by coating degradable polymer template fibres (TUFT process),” Adv Mater, 12(9) (2000), 636–40.

    Article  Google Scholar 

  12. A. Bornat “A production of electrostatically spun products,” US patent 4689186, 1987.

    Google Scholar 

  13. D. H. Reneker et al. “Electrospinning and nanofibers,” Book of abstracts. New frontiers in fiber science, spring meeting 2001. Available from: http://www.tx.ncsu.edu/jtatm/volume1specialissue/presentations/pres_part1.doc.

    Google Scholar 

  14. P. W. Gibson, H. L. Schreuder-Gibson, D. Riven “Electrospun fiber mats: transport properties”, AIChE J, 45(1)(1999),190–195.

    Article  Google Scholar 

  15. H. J. Jin, S. Fridrikh, G. C. Rutledge, D. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Abstr Pap Am Chem Soc, 224(1–2) (2002), 408.

    Google Scholar 

  16. K. M. Sawicka, P. J. Gouma, “Electrospun composite nanofibers for functional applications” Nanoparticle Res, 8 (2006), 769–781

    Article  Google Scholar 

  17. J. J. Mack et al. “Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers,” Adv Mater, 17 (2005), 77.

    Article  Google Scholar 

  18. K. Saeed et al. “Preparation of electro-spun nanofibres of carbon nanotube/polycaprolactone nanocomposite,” Polymer, 47 (2006), 8019 – 8025.

    Article  Google Scholar 

  19. C. Li et al. “Electrospun silk-BMP-2 scaffolds for bone tissue engineering,” Biomaterials, 27(16) (2006), 3115–3124.

    Article  Google Scholar 

  20. S. D. McCullen et al. “Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose derived human mesenchymal stem cells,” International Journal of Nanomedicine, 2(2) (2007), 253–263

    Google Scholar 

  21. H. T. Ahmed et al. “Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers,” Journal of Materials Research, 25 (2010), 857–865.

    Article  Google Scholar 

  22. S. Ramaswamy, “Study of Morphological, Mechanical and Electrical properties of Electrospun Poly (lactic acid) Nanofibers incorporated with Multiwalled Carbon Nanotubes as a Function of Thermal Bonding,” (M.Sc. thesis, North Carolina State University, 2009),

    Google Scholar 

  23. H-S. Chien, C. Wang, “Effects of Temperature and Carbon Nanocapsules (CNCs) on the Production of Poly(D,L-lactic acid) (PLA) Nonwoven Nanofibre Mat.” Fibres and Textiles in Eastern Europe, 21 (97) (2013), 72–77.

    Google Scholar 

  24. C. Xiang, Joo Y. L., Frey, “Cellulose Based Composites: Cellulose Based Composites,” Journal of Biobased Materials and Bioenergy, 3(2) (2014), 147–155

    Article  Google Scholar 

  25. D. Rodoplu, M. Mutlu, “Effects of Electrospinning Setup and Process Parameters on Nanofiber Morphology Intended for the Modification of Quartz Crystal Microbalance Surfaces,” Journal of Engineered Fibers and Fabrics, 7 (2) (2012), 118 – 123.

    Google Scholar 

  26. C. Henriques et al. “A Systematic Study of Solution and Processing Parameters on Nanofiber Morphology Using a New Electrospinning Apparatus,” Journal of Nanoscience and Nanotechnology, 8 (1–11) (2008), 1 – 11

    Article  Google Scholar 

  27. A. Koski, K. Yim, S. Shivkumar, “Effect of molecular weight on fibrous PVA produced by electrospinning,” Materials Letters, 58 (2004), 493–497.

    Article  Google Scholar 

  28. Z. M. Huang et al. “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composite Science and Tech. 63(2003), 2223–2253.

    Article  Google Scholar 

  29. S. Ramakrishna et al. “An Introduction to Electrospinning and Nanofibers,” World Scientific Publishing Co. Pte. Ltd., 2005.

    Book  Google Scholar 

  30. M. Chowdhury, G. Stylios, “Effect of Experimental Parameters on the Morphology of Electrospun Nylon 6 fibres,” International Journal of Basic and Applied Sciences, 10(6) (2010), 70 – 78

    Google Scholar 

  31. V. Pillay et al. “A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications,” Journal of Nanomaterials, (2013), http://dx.doi.org/10.1155/2013/789289

  32. F. Abdel-Hady, A. Alzahrany, M. Hamed, “Experimental Validation of Upward Electrospinning Process,” ISRN Nanotechnology, (2011), http://dx.doi:10.5402/2011/851317

    Google Scholar 

  33. S. O. Adeosun et al. “Mechanical Behaviour of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibres,” Journal of the Minerals, Metals and Materials Society (TMS), DOI: 10.1007/s11837–015–1565–7

    Google Scholar 

  34. E. I. Akpan et al., “Structural Characteristics of Batch Processed Agro-Waste Fibres’, World Academy of Science, Engineering and Technology,” International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8(3) (2014), 247 – 254.

    Google Scholar 

  35. C. Mit-uppatham, M. Nithitanakul, P. Supaphol, “Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers: A Preliminary Report,” Macromol. Symp., 216 (2004) 293 – 300.

    Article  Google Scholar 

  36. G. Ahmet, “Electrospinning of Polystyrene/Butyl Rubber Blends: A Parametric Study” (M.Sc. Middle East Technical University, 2008).

    Google Scholar 

  37. E. I. Akpan “Processing and Characterisation of Selected Biodegradable Fibre-PLA Composites,” (Ph.D. Thesis, University of Lagos, Nigeria, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Adeosun, S.O., Akpan, E.I., Gbenebor, O.P., Peter, A.A., Olaleye, S.A. (2016). Filler Surface Nature, Bead, Solution Viscosity and Fibre Diameter of Electrospun Particle-Reinforced Polylactide. In: TMS 2016 145th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48254-5_13

Download citation

Publish with us

Policies and ethics