Skip to main content

Modeling of Inclusion Behavior in an Aluminum Induction Furnace

  • Chapter
Light Metals 2016

Abstract

Crucible induction furnaces are widely used in the aluminum industry, for scrap remelting, metal treatments and casting. The operation principle results in an intense circulation within the furnace, raising a specific question with regard to inclusion dynamics within the melt, reflected by LiMCA measurements at the furnace exit. In an effort to understand the involved phenomena, a hydrodynamic model of an induction furnace was built and complemented by an inclusion module that takes into account the transport of inclusions and the interaction of inclusions with other inclusions (aggregation) or with the crucible walls. A numerical inclusion distribution has been developed that reflects the characteristics of the inclusions present in the melt. The model and results of its application are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Schmitz, D. Trauzedell, “Latest developments in recycling production residues employing coreless induction furnaces”, Casting plant and technology, 4/2013, 12–19.

    Google Scholar 

  2. A. Peel, P.-Y. Menet, “The application of MHD side stirring technology to aluminium melting furnaces for operational efficiency improvement — A case study”, J. Manuf. Sci. Prod. 2015; 15(1): 59–67.

    Google Scholar 

  3. R. Stal, P. Hanley, “Electromagnetic stirring in aluminium ladles”, in Light Metals 2009, Ed. G. Bearne, TMS-AIME, 2009, 627–630.

    Google Scholar 

  4. M.W. Kennedy, J.A. Bakke, R.E. Aune, “Impact of coil geometry on magnetohydrodynamic flow in liquid aluminium and its relevance to inclusion separation by electromagnetophoresys”, J. Manuf. Sci. Prod. 2015; 15(1): 69–78.

    Google Scholar 

  5. D. Shu, J. Wang, B. Sun, “Online electromagnetic filtration of molten aluminium using a multistage separator system”, J. Manuf. Sci. Prod. 2015; 15(1): 89–92.

    Google Scholar 

  6. R. Fritzsch, M.W. Kennedy, S. Akbarnedjad, R.E. Aunes, “Effect of electromagnetic fields on the priming of high grade ceramic foam filters (CFF) with liquid aluminum”, in Light Metals 2015, Ed. M. Hyland, TMS-AIME, 2009, 929–935.

    Google Scholar 

  7. G. Guest, S. Williams, P. Gastaldi, “Development of a new generation electromagnetic metal moving system”, in Light Metals 2012, Ed. C. Suarez., TMS-AIME, 2012, 1013–1018.

    Chapter  Google Scholar 

  8. A. Bansal, P. Chapelle, Y. Delannoy, E. Waz, P. Le Brun, J.P. Bellot, “Experimental and numeric analysis of the deformation of a liquid aluminum free surface covered by an oxide layer during induction melting”, Metall. Mater. Trans. B, (2015), Vol 46(9), 2096–2109.

    Article  Google Scholar 

  9. A. Bansal, P. Chapelle, E. Waz, Y. Delannoy, P. Le Brun, J.P. Bellot, “Simulation of free surface and molten metal behavior during induction melting of an aluminium alloy”, 8th International Conference on Electromagnetic Processing of Materials, Cannes, France, October 12–16, 2015.

    Google Scholar 

  10. S. Instone, A. Buchholz, G.-U. Gruen, “Inclusion Transport Phenomena in Casting Furnaces”, in Light Metals 2008, Ed. D. De Young, TMS-AIME, 2008, 811–816.

    Google Scholar 

  11. O. Mirgaux, D. Ablitzer, E. Waz, J.P. Bellot, “Mathematical modeling and computer simulation of molten aluminium purification by flotation in stirred reactor”, Met Trans B, Vol. 40B, (2009), 363–375.

    Article  Google Scholar 

  12. P. Gardin, S. Gauthier, M. Simonnet, “Multiphase Model for Predicting the Elimination of Inclusions inside a Liquid-Steel Ladle”, Advanced Engineering Materials, (2011), Vol.13, 538–542.

    Article  Google Scholar 

  13. I.L.A. Daoud, N. Rimbert, A. Jardy, B. Oesterle, S. Hans, J.P. Bellot, “3D modeling of the aggregation of oxides inclusions in a liquid steel ladle: two numerical approaches”, Advanced Engineering Materials, (2011), Vol.13, 543–549.

    Article  Google Scholar 

  14. F. Yamao, K. Sassa, K. Iwai, S. Asai. “Separation of inclusions in liquid metal using fixed alternating magnetic field.” Journal of the Iron and Steel Institute of Japan-Tetsu to Hagane, (1997), Vol. 83(1), 30–35.

    Google Scholar 

  15. S. Wang, L. Zhang, Y. Tian, Y. Li, H. Ling. “Separation of Non-metallic Inclusions from Molten Steel Using High Frequency Electromagnetic Fields.” Metall. Mater. Trans. B, (2014), 45(5), 1915–1935.

    Article  Google Scholar 

  16. V. Bojarevics, K. Pericleous, R. Brooks. “Dynamic model for metal cleanness evaluation by melting in a cold crucible.” Metall. Mater. Trans. B, (2009), Vol. 40(3), 328–336.

    Article  Google Scholar 

  17. M. Ščepanskis, A. Jakovičs, E. Baake, B. Nacke. “Solid inclusions in an electromagnetically induced recirculated turbulent flow: Simulation and experiment.” Int. J. of Multiphase Flow, (2014), Vol 64, 19–27.

    Article  Google Scholar 

  18. S.J. Roach, H. Heinen, “A New Method to Dynamically Measure the Surface Tension, Viscosity and Density of Melts”, Metall. Mater. Trans. B, (2005), Vol. 36(10), 667–675.

    Article  Google Scholar 

  19. C. Garcia-Cordovilla, E. Louis, A. Pamies, “The surface tension of liquid pure aluminium and aluminium-magnesium alloy”, J. of Mat. Sci., 21(1986), 2787–2792.

    Article  Google Scholar 

  20. S. Kumar, D. Ramkrishna, “On the solution of population balance equations by discretization—I. A fixed pivot technique.” Chemical Engineering Science, (1996), Vol. 51(8), 1311–1332.

    Article  Google Scholar 

  21. J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, L. Mörl, “Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique.” Chemical Engineering Science, (2006), Vol. 61(10), 3327–3342.

    Article  Google Scholar 

  22. L. I. Zaichik, O. Simonin, V. M. Alipchenkov. “Turbulent collision rates of arbitrary-density particles.” Int. J. of Heat and Mass Trans., (2010), 53(9), 1613–1620.

    Article  Google Scholar 

  23. S. Instone, M. Badowski, D. Krings, “Sampling Tool for In-Depth Study of Furnace Processes”, in Light Metals 2014, Ed. J. Grandfield, TMS-AIME, 2014, 1003p–1008.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Waz, E., Bansal, A., Chapelle, P., Delannoy, Y., Bellot, J.P., Le Brun, P. (2016). Modeling of Inclusion Behavior in an Aluminum Induction Furnace. In: Williams, E. (eds) Light Metals 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48251-4_144

Download citation

Publish with us

Policies and ethics