Skip to main content

Microstructurally Explicit Study of Transport Phenomena in Uranium Oxide

  • Conference paper
Book cover TMS 2014: 143rd Annual Meeting & Exhibition

Abstract

Transport mechanisms, such as mass and heat transfer, are critical to the efficiency and the reliability of nuclear fuels such as uranium oxide. These properties can be significantly affected by the microstructure of materials. This paper looks into the effects of grain boundary (GB) Kapitza resistance on the overall thermal conductivity and fission gas transport of UO2 using a 3-D finite element model with microstructurally explicit information. The model developed is created with a reconstruction of the microstructure of depleted uranium samples performed using serial sectioning techniques with Focused Ion Beam (FIB) and Electron Backscattering Diffraction (EBSD). The properties of these microstructural entities are characterized by misorientation angles and Coincident Site Lattice (CSL) models, which provide a framework to assign spatially dependent thermal and mass transfer properties based on the location and connectivity of these entities in actual microstructures. The key feature of this model is the coupling between heat transfer and mass transfer of fission products which makes it a multi-physics model capable of following the evolution of thermal performance as fission products are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.K. Fink, Thermophysical properties of uranium dioxide. Journal of Nuclear Materials 279 (2000) 1–18.

    Article  Google Scholar 

  2. D.R. Olander, P. Van Uffelen, On the role of grain boundary diffusion in fission gas release. Journal of Nuclear Materials 288 (2001) 137–147.

    Article  Google Scholar 

  3. H.C. Lim, K. Rudman, K. Krishnan, R. McDonald, P. Peralta, P. Dickerson, D. Byler, C. Stanek, K.J. McClellan, Microstructural Effects on Thermal Conductivity of Uranium Oxide: A 3-D Multi-Physics Simulation, in: ASME (Ed.), ASME 2013 International Mechanical Engineering Congress & Exposition, ASME, San Diego, California, USA, 2013.

    Google Scholar 

  4. S.R. Phillpot, A. El-Azab, A. Chernatynskiy, J.S. Tulenko, Thermal Conductivity of U02 Fuel: Predicting Fuel Performance from Simulation. JOM 63 (2011) 73–79.

    Google Scholar 

  5. P.G. Lucuta, H. Matzke, I.J. Hastings, A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations. Journal of Nuclear Materials 232 (1996) 166–180.

    Article  Google Scholar 

  6. P.L Kapitza, J Phys (Moscow) (1941) 181.

    Google Scholar 

  7. D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Element, Technical Information Center, Office of Public Affairs Energy Research and Development Administration, United States of America, 1976.

    Book  Google Scholar 

  8. K.R. Pankaj V. Nerikar, Grain Boundaries in Uranium Dioxide: Scanning Electron Microscopy Experiments and Atomistic Simulations. The American Ceramic Society (2011).

    Google Scholar 

  9. P.K. Schelling, S.R. Phillpot, P. Keblinski, - Kapitza conductance and phonon scattering at grain boundaries by simulation. - 95 (2004) - 6091.

    Google Scholar 

  10. Y. Chen, C.A. Schuh, Diffusion on grain boundary networks: Percolation theory and effective medium approximations. Acta Materialia 54 (2006) 4709–4720.

    Article  Google Scholar 

  11. H.C. Lim, K. Rudman, K. Krishnan, R. Mcdonald, P. Dickerson, D. Byler, P. Peralta, C. Stanek, K. Mcclellan, Microstructurally Explicit Simulation of Intergranular Mass Transport in Oxide Nuclear Fuels. Nuclear Technology (2013).

    Google Scholar 

  12. P.C. Millett, Percolation on grain boundary networks: Application to fission gas release in nuclear fuels. Computational materials science 53 (2012) 31–36.

    Article  Google Scholar 

  13. D.S. Smith, S. Grandjean, J. Absi, S. Kadiebu, S. Fayette, Grain-boundary thermal resistance in polycrystalline oxides: alumina, tin oxide, and magnesia. High Temperatures-High Pressures 35–6 (2003) 93–99.

    Article  Google Scholar 

  14. H.-S. Yang, G.R. Bai, L.J. Thompson, J.A. Eastman, Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia. Acta Materialia 50 (2002) 2309–2317.

    Article  Google Scholar 

  15. K. Chockalingam, P.C. Millett, M.R. Tonks, Effects of intergranular gas bubbles on thermal conductivity. Journal of Nuclear Materials 430 (2012) 166–170.

    Article  Google Scholar 

  16. P.C. Millett, M. Tonks, Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity. Journal of Nuclear Materials 412 (2011) 281–286.

    Article  Google Scholar 

  17. P.G. Shewmon, Diffusion in solids, McGraw, New York, 1963.

    Google Scholar 

  18. COMSOL Multiphysics User’s Guide, 2011.

    Google Scholar 

  19. D. Davies, G. Long, H.B.E. United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment, THE EMISSION OF XENON-133 FROM LIGHTLY IRRADIATED URANIUM DIOXIDE SPHEROIDS AND POWDERS, United Kingdom, 1963.

    Google Scholar 

  20. P.C. Millett, M.R. Tonks, K. Chockalingam, Y. Zhang, S.B. Biner, Three dimensional calculations of the effective Kapitza resistance of U02 grain boundaries containing intergranular bubbles. Journal of Nuclear Materials 439 (2013) 117–122.

    Article  Google Scholar 

  21. K. Forsberg, A.R. Massih, Diffusion theory of fission gas migration in irradiated nuclear fuel U02. Journal of Nuclear Materials 135 (1985) 140–148.

    Article  Google Scholar 

  22. M.R. Tonks, P.C. Millett, P. Nerikar, S. Du, D. Andersson, CR. Stanek, D. Gaston, D. Andrs, R. Williamson, Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations. Journal of Nuclear Materials 440 (2013) 193–200.

    Article  Google Scholar 

  23. E. Thornton, Viscosity and Thermal Conductivity of Binary Gas Mixtures: Xenon-Krypton, Xenon-Argon, Xenon-Neon and Xenon-Helium. Proceedings of the Physical Society 76 (1960) 104.

    Article  Google Scholar 

  24. K. Rudman, Three-Dimensional Characterization of Sintered U02+x: Effects of Oxygen Content on Microstructure and Its Evolution. Nuclear Technology (2013).

    Google Scholar 

  25. K. Rudman, P. Dickerson, D. Byler, R. McDonald, H. Lim, P. Peralta, C. Stanek, K. McClellan, THREE-DIMENSIONAL CHARACTERIZATION OF SINTERED UO2+x: EFFECTS OF OXYGEN CONTENT ON MICROSTRUCTURE AND ITS EVOLUTION. Nuclear Technology 182 (2013) 145–154.

    Google Scholar 

  26. Y. Chen, C.A. Schuh, Diffusion on grain boundary networks: Percolation theory and effective medium approximations. Acta mater. 54 (2006) 4709–4720.

    Article  Google Scholar 

  27. H.C. Lim, Microstructural Explicit Simulation of Grain Boundary Diffusion in Depleted U02, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ USA, 2011, pp. 91.

    Google Scholar 

  28. D. Stauffer, A. Aharony, Introduction to percolation theory, 2nd ed., Taylor & Francis, London ; Washington, D.C, 1992.

    Google Scholar 

  29. Y. Chen, C.A. Schuh, Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials. Scripta Materialia 57 (2007) 253–256.

    Article  Google Scholar 

  30. M. Frary, CA. Schuh, Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering. Acta Materialia 53 (2005) 4323–4335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Lim, H.C. et al. (2014). Microstructurally Explicit Study of Transport Phenomena in Uranium Oxide. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_123

Download citation

Publish with us

Policies and ethics