Skip to main content

Solid-liquid Phase Transitions of Fe Nanoparticles

  • Conference paper
TMS 2014: 143rd Annual Meeting & Exhibition
  • 3161 Accesses

Abstract

In this paper, we review our recent works of solid-liquid phase transitions of nano particle Fe via molecular dynamics simulations. Firstly, we present our measurement of melting and solidification points of Fe in nano and bulk size. The melting points closer to equilibrium point than previous results validate our Finnis-Sinclair interactions thermodynamically. Moreover, we discuss the crystalline structures observed during the solidification and melting process. Specially, we discuss the lamellar structures and five-fold twins in nanoparticles Fe in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Persson, C. Desgranges, and J. Delhommelle, “Polymorph selection during the crystallization of iron under the conditions of Earth’s inner core,” Chemical Physics Letters, 511(2011), 57–61.

    Article  Google Scholar 

  2. L. Koci, A.B. Belonoshko, and R. Ahuja, “Molecular dynamics study of liquid iron under high pressure and high temperature,” Physical Review B, 73(2006), 224113

    Article  Google Scholar 

  3. J.Y. Wu, S. Nagao, J.Y. He and Z.L. Zhang, “Role of Five-fold Twin Boundary on the Enhanced Mechanical Properties of fcc Fe Nanowires,” Nano Letters, 11(2011), 5264–5273.

    Article  Google Scholar 

  4. Y. Watanabe, Y Shibuta, and T. Suzuki, “A Molecular Dynamics Study of Thermodynamic and Kinetic Properties of Solid-Liquid Interface for Bcc Iron,” Isij International, 50(2010), 1158–1164.

    Article  Google Scholar 

  5. D.Y Sun, M. Asta, J.J. Hoyt, M.I. Mendelev and D.J. Srolovitz, “Crystal-melt interfacial free energies in metals: fcc versus bcc,” Physical Review B, 69(2004), 020102.

    Article  Google Scholar 

  6. D.Y. Sun, M. Asta, and JJ. Hoyt, “Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe,” Physical Review B, 69(2004), 174103.

    Article  Google Scholar 

  7. Y Shibuta and T. Suzuki, “A molecular dynamics study of cooling rate during solidification of metal nanoparticles,” Chemical Physics Letters, 502(2011), 82–86.

    Article  Google Scholar 

  8. Y Shibuta, Y Watanabe, and T. Suzuki, “Growth and melting of nanoparticles in liquid iron: A molecular dynamics study,” Chemical Physics Letters, 475(2009), 264–268.

    Article  Google Scholar 

  9. T. C. Germann, K. Kadau, and P.S. Lomdahl, “25 Tflop/s multibillion-atom molecular dynamics simulations and visualization/analysis on BlueGene/L,” in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. 2005: Citeseer.

    Google Scholar 

  10. K. Kadau , T.C. Germann, and P.S. Lomdahl, “Large-scale molecular-dynamics simulation of 19 billion particles”, Internationaljournal of Modern Physics C, 15(2004), 193–201.

    Article  Google Scholar 

  11. K. Kadau, T.C. Germann, P.S. Lomdahl and B.L. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science, 296(2002), 1681–1684.

    Article  Google Scholar 

  12. W. Smith and T. R. Forester, “DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package,” Journal of Molecular Graphics, 14(1996), 136–141.

    Article  Google Scholar 

  13. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola and J.R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, 81(1984), 3684.

    Article  Google Scholar 

  14. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (New York, NY: Oxford University Press, 1989).

    Google Scholar 

  15. J.W. Cheng, X.M. Zhang, Y.Q. Wu, X.L. Wang, S.B. Zheng, G.C. Jiang, “MD simulation of alpha-Fe and gamma-Fe with long-range F-S potential”, Acta Physico-Chimica Sinica, 23(2007), 779–785.

    Google Scholar 

  16. Y.H. Liu, Y.Q. Wu, T. Shen, Z.K. Wang, G.C. Jiang, “Molecular dynamics simulation of phase transformation of gamma-Fe -> delta-Fe -> liquid-Fe in continuous temperature-rise process,” Acta Metallurgica Sinica, 46(2010), 172–178.

    Google Scholar 

  17. R.S. Liu, K.J. Dong, J.Y. Li, A.B. Yu and R.P. Zou, “Formation and description of nano-clusters formed during rapid solidification processes in liquid metals,” Journal of Non-Crystalline Solids, 351(2005), 612–617.

    Article  Google Scholar 

  18. Z.A. Tian, R.S. Liu, H.R. Liu, C.X. Zheng, Z.Y. Hou and P. Peng, “Molecular dynamics simulation for cooling rate dependence of solidification microstructures of silver,” Journal of Non-Crystalline Solids, 354(2008), 3705–3712.

    Article  Google Scholar 

  19. T. Shen, Y.Q. Wu, and X.G. Lu, “Structural evolution of five-fold twins during the solidification of Fe5601 nanoparticle: a molecular dynamics simulation,” Journal of Molecular Modeling, 19(2013), 751–755.

    Article  Google Scholar 

  20. Z.H. Jin, H.W Sheng, and K. Lu, “Melting of Pb clusters without free surfaces,” Physical Review B, 60(1999), 141–149.

    Article  Google Scholar 

  21. S.N. Luo, A. Strachan, and D.C. Swift, “Nonequilibrium melting and crystallization of a model Lennard-Jones system,” Journal of Chemical Physics, 120(2004), 11640–11649.

    Article  Google Scholar 

  22. T. Shen, W.J. Meng, Y.Q. Wu and X.G. Lu, “Size dependence and phase transition during melting of fcc-Fe nanoparticles: A molecular dynamics simulation,” Applied Surface Science, 277(2013), 7–14.

    Article  Google Scholar 

  23. M.W. Chase, NIST-JANAF thermochemical tables. 1998.

    Google Scholar 

  24. G. Ghosh and G. Olson, “The isotropic shear modulus of multicomponent Fe-base solid solutions,” Acta Materialia, 50(2002), 2655–2675.

    Article  Google Scholar 

  25. D.Y. Sun, M. Asta, and J. Hoyt, “Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe,” Physical Review B, 69(2004), 174103.

    Article  Google Scholar 

  26. Y. Shibuta, S. Takamoto, and T. Suzuki, “A molecular dynamics study of the energy and structure of the symmetric tilt boundary of iron,” ISIJ international, 48(2008), 1582–1591.

    Article  Google Scholar 

  27. Y. Shibuta and T. Suzuki, “Melting and nucleation of iron nanoparticles: A molecular dynamics study,” Chemical Physics Letters, 445(2007), 265–270.

    Article  Google Scholar 

  28. Y.Q. Wu, T. Shen, and X.G. Lu, “Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations,” Chemical Physics Letters, 564(2013), 41–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Wu, Y., Li, R., Shen, T. (2014). Solid-liquid Phase Transitions of Fe Nanoparticles. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_119

Download citation

Publish with us

Policies and ethics