Skip to main content

Development of Al/C60 Composites with Nano-Network Structures

  • Chapter
Light Metals 2014
  • 34 Accesses

Abstract

It has been challenging for metals to synthesize optimal nano-structures with a desirable performance. Herein, we propose a new idea for the development of nano-network structures in Al/C60 composites by the self-assembly of Al-C phases. Carbon atoms, dissembled from the individually dispersed C60-fullerenes, are intercalated into the interstitials of aluminum, producing Al-C phases with artificially moderated lattice structures. The isolated Al-C phases grow with a strong anisotropy derived from lattice mismatch, meet neighbor Al-C phases, and then self-assemble into network structures. The novel nano-structures, extremely stable at high temperatures, offer significant potential for the development of thermally-stable high-strength structural aluminum. The controlled lattice provides a new paradigm for atomic level design of crystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, H. Gleiter, “Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation,” Nature Mater, 1 (2002) 45–49.

    Article  Google Scholar 

  2. M. Murayama, J. M. Howe, H. Hidaka, S. Takaki, “Atomiclevel observation of disclination dipoles in mechanically milled, nanocrystalline Fe,” Science, 295 (2002) 2433–2435.

    Article  Google Scholar 

  3. S. Ruan, C. A. Schuh, “Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nanoquasicrystalline structures ,” Acta Mater, 57 (2009) 3810–3822.

    Article  Google Scholar 

  4. T. Niendorf, H. J. Maier, D. Canadinc, D. G. G. Yapici, I. Karaman, “Improvement of the fatigue performance of an ultrafine-grained Nb-Zr alloy by nano-sized precipitates formed by internal oxidation ,” Scripta Mater, 58 (2008), 571–574.

    Article  Google Scholar 

  5. Y. H. Liu, G. W. Ru, D. Q. Zhao, M. X. Pan, W. H. Wang, “Super plastic bulk metallic glasses at room temperature,” Science, 316 (2007) 1385–1388.

    Article  Google Scholar 

  6. D. H. Bae, S. H. Kim, D. H.; Kim, W. T. Kim, “Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles,” Acta Mater 50 (2002) 2343–2356.

    Article  Google Scholar 

  7. H. J. Choi, G. B. Kwon, G. Y. Lee, D. H. Bae, “Reinforcement with carbon nanotubes in aluminum matrix composites,” Scripta Mater, 59 (2008) 360–363.

    Article  Google Scholar 

  8. S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, S. H. Hong, “Extraordinary strengthening effect of carbon nanotubes in metalmatrix nanocomposites processed by molecular-level mixing,” Adv Mater, 17 (2005) 1377–1381.

    Article  Google Scholar 

  9. R. Zhong, H. Cong, P. Hou, “Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes,” Carbon, 41 (2003) 848–851.

    Article  Google Scholar 

  10. P. Calvert, “Nanotube composites: A recipe for strength,” Nature, 399 (1999) 210–211.

    Article  Google Scholar 

  11. K. Komatsu, M. Murata, Y. Murata, “Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis,” Science, 307 (2005) 238–240.

    Article  Google Scholar 

  12. A. M. K. Esawi, K. Morsi, A. Sayed, A. Abdel Gawad, P. Borah, “Fabrication and properties of dispersed carbon nanotube—aluminum composites,” Mater Sci Eng A, 508 (2009) 167–173.

    Article  Google Scholar 

  13. T. Tokunaga, K. Kaneko, K. Sato, Z. Horita, “Microstructure and mechanical properties of aluminum—fullerene composite fabricated by high pressure torsion,” Scripta Mater, 58 (2008) 735–738.

    Article  Google Scholar 

  14. L. Ci, Z. Ryu, N. Jin-Phillipp, M. Rühle, “Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum,” Acta Mater, 54 (2006) 5367–5375.

    Article  Google Scholar 

  15. M. P. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. Pablo, P. F. Nealey, “Directed assembly of block copolymer blends into nonregular device-oriented structures,” Science 308 (2005) 1442–1446.

    Article  Google Scholar 

  16. Y. Tada, S. Akasaka, M. Takenaka, H. Yoshida, R. Ruiz, E. Dobisz, H. Hasegawa, “Nine-fold density multiplication of hcp lattice pattern by directed self-assembly of block copolymer,” Polymer, 50 (2009) 4250–4256.

    Article  Google Scholar 

  17. J. Gao, Y. Wei, B. Li, Y. Han, “Fabrication of fibril like aggregates by self-assembly of block copolymer mixtures via interpolymer hydrogen bonding,” Polymer, 49 (2008) 2354–2361.

    Article  Google Scholar 

  18. H.J. Choi, J.H. Shin and D.H. Bae, “Self-assembled network structures in Al/C60 composites,” Carbon, 48 (2010) 3700–3707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Choi, H., Bae, D. (2014). Development of Al/C60 Composites with Nano-Network Structures. In: Grandfield, J. (eds) Light Metals 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48144-9_242

Download citation

Publish with us

Policies and ethics