Skip to main content

Instrumentation for Nuclear Fusion

  • Living reference work entry
  • First Online:
Handbook of Particle Detection and Imaging
  • 62 Accesses

Abstract

To characterize a fusion plasma in an adequate way and to understand its complex behavior as completely as possible, a large number of different plasma parameters must be determined simultaneously. Most of them are local quantities varying with the radial coordinate and in time. The spatial resolution aimed at is 1–5 cm, and the required time resolution varies from μs to ms depending on the measured quantity. The demanded accuracy of all the measuring systems is typically 1–10%. The major challenge for fusion plasma diagnostic originates from the harsh environment they are exposed to. When proceeding to future burning-plasma devices, these burdens will further increase mainly due to the strongly increased neutron fluence and energy load during the lifetime of the diagnostic. This chapter sketches basic nuclear fusion and concentrates on diagnostic areas where radiation detectors are involved, factoring out completely the wide field of electromagnetic measurements and laser-aided methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bitter M, Hill K, Scott S, Paul S, Ince-Cushman A et al (2007) AIP conference proceedings, vol 988. Melville, New York, pp 155–164

    Book  Google Scholar 

  • Bosch H-S, Hale GM (1992) Improved formulas for fusion cross-sections and thermal reactivities. Nucl Fusion 32(4):611–631, Erratum (1993) 33(12):1919

    Article  ADS  Google Scholar 

  • Costley A, Sugie T, Vayakis G, Walker C (2005) Technological challenges of ITER diagnostics. Fusion Eng Des 74:109–119

    Article  Google Scholar 

  • Hendel HW, Palladino RW, Barnes CW et al (1990) In situ calibration of TFTR neutron detectors. Rev Sci Instrum 61:1900

    Article  ADS  Google Scholar 

  • Hutchinson I (2005) Principles of plasma diagnostics. Cambridge University Press, Cambridge

    Google Scholar 

  • Ince-Cushman A, Rice JE, Bitter M, Reinke ML, Hill KW et al (2008) Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas. Rev Sci Instrum 79:10E302

    Article  Google Scholar 

  • Jarvis O, Sadler G, van Bell P, Elevant T (1990) In-vessel calibration of the JET neutron monitors using a 252Cf neutron source: difficulties experienced. Rev Sci Instrum 61:3172

    Article  ADS  Google Scholar 

  • Kiptily V et al (2002) γ-Ray diagnostics of energetic ions in JET. Nucl Fusion 42:999

    Article  ADS  Google Scholar 

  • Krasilnikov A, Sasao M, Kaschuck Y, Kiptily V, Nishitani T et al (2007) AIP conference proceedings, vol 988. Melville, New York, pp 249–258

    Book  Google Scholar 

  • Lochte-Holtgreven W (1995) Plasma diagnostics. AIP, New York

    Google Scholar 

  • Meister H, Eich T, Endstrasser N, Giannone L, Kannamuller M et al (2010) Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane. Rev Sci Instrum 81(10):10E132

    Article  Google Scholar 

  • Pacella D, Romano A, Pizzicaroli G, Gabellieri L, Bellazzini R et al (2007) AIP conference proceedings, vol 988. Melville, New York, pp 197–200

    Book  Google Scholar 

  • Wesson J (2011) Tokamaks, 4th edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Zimbal A, Reginatto M, Schuhmacher H (2007) AIP conference proceedings, vol 988. Melville, New York, pp 323–326

    Book  Google Scholar 

Further Reading

  • Chen FF (2015) Introduction to plasma physics and controlled fusion. Springer, New York

    Google Scholar 

  • Griem H (2008) Principles of plasma spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Kunze HJ (2009) Introduction to plasma spectroscopy. Springer, Heidelberg

    Book  Google Scholar 

  • Orsitto FP et al (eds) (2008) Burning plasma diagnostics. AIP conference proceedings, vol 988. Melville, New York

    Google Scholar 

  • Piel A (2010) Plasma physics: an introduction to laboratory, space, and fusion plasmas. Springer, Berlin

    Book  Google Scholar 

Major Fusion Devices

Download references

Acknowledgments

The author wants to thank the ASDEX Upgrade team for supplying sample data and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Neu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Neu, R. (2020). Instrumentation for Nuclear Fusion. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-47999-6_32-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47999-6_32-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47999-6

  • Online ISBN: 978-3-319-47999-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics