Skip to main content

Vertebrates (Chordata)

Encyclopedia of Animal Cognition and Behavior

Introduction

With almost 70,000 recognized extant species, chordates form one of the most diverse of the classic animal phyla, behind only arthropods and mollusks. Vertebrates correspond to for almost the entire diversity of Chordata, and are ecologically important mainly because of their large body sizes (although absolute numbers of biomass belong to small-bodied animal groups), representing most of the top predators of food webs. Even though a collection and fossilization bias may be at play, favoring animals with hard tissues from aquatic environments, vertebrates also comprise a significant part of the fossil record.

Throughout their evolutionary history, vertebrates displayed a variety of locomotor modes and occupied a plethora of environments and ecological niches, including land, air, and secondary returns to aquatic environments. Feeding habits and mechanics, like herbivory (Herbivore) and mastication, and reproductive and ontogenetic strategies, such as internal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahlberg, P. E. (2018). Follow the footprints and mind the gaps: A new look at the origin of tetrapods. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109(1–2), 115–137.

    Article  Google Scholar 

  • Clements, J. F., Schulenberg, T. S., Iliff, M. J., Billerman, S. M., Fredericks, T. A., Sullivan, B. L., & Wood, C. L. (2019). The eBird/clements checklist of birds of the world: v2019. https://www.birds.cornell.edu/clementschecklist/download/

  • Condamine, F. L., Romieu, R., & Guinot, G. (2019). Climate cooling and clade competition likely drove the decline of lamniform sharks. Proceedings of the National Academy of Sciences, 116, 20584–20590. https://doi.org/10.1073/pnas.1902693116.

    Article  Google Scholar 

  • Datovo, A., & Rizzato, P. P. (2018). Evolution of the facial musculature in basal ray-finned fishes. Frontiers in Zoology, 15(1), 40. https://doi.org/10.1186/s12983-018-0285-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donoghue, P. C., & Keating, J. N. (2014). Early vertebrate evolution. Palaeontology, 57(5), 879–893.

    Article  Google Scholar 

  • Ford, D. P., & Benson, R. B. J. (2019). The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nature Ecology and Evolution, 4, 57–65. https://doi.org/10.1038/s41559-019-1047-3.

    Article  PubMed  Google Scholar 

  • Fricke, R., Eschmeyer, W. N., & Fong, J. D. (2020). Eschmeyer’s catalog of fishes: Species by family/subfamily. Retrieved from http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp

  • Friedman, M. (2015). The early evolution of ray-finned fishes. Palaeontology, 58(2), 213–228.

    Article  Google Scholar 

  • Garberoglio, F. F., Apesteguía, S., Simões, T. R., Palci, A., Gómez, R. O., Nydam, R. L., Larsson, H. C. E., Lee, M. S. Y., & Caldwell, M. W. (2019). New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5, eaax5833. https://doi.org/10.1126/sciadv.aax5833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland, P. W., Garcia-Fernàndez, J., Williams, N. A., & Sidow, A. (1994). Gene duplications and the origins of vertebrate development. Development, 1994(Supplement), 125–133.

    Google Scholar 

  • Kardong, K. V. (2012). Vertebrates: Comparative anatomy, function, evolution. New York: McGraw-Hill.

    Google Scholar 

  • Klembara, J., Hain, M., Čerňanský, A., Berman, D. S., & Henrici, A. C. (2020). Anatomy of the neural endocranium, parasphenoid and stapes of Diadectes absitus (Diadectomorpha) from the early Permian of Germany based on the high-resolution X-ray microcomputed tomography. The Anatomical Record, 1–23. https://doi.org/10.1002/ar.24376.

  • Kuratani, S., Oisi, Y., & Ota, K. G. (2016). Evolution of the vertebrate cranium: Viewed from hagfish developmental studies. Zoological Science, 33(3), 229–238.

    Article  Google Scholar 

  • Ledbetter, N. M., & Bonnet, R. M. (2019). Terrestriality constrains salamander limb diversification: Implications for the evolution of pentadactyly. Journal of Evolutionary Biology, 32, 642–652.

    PubMed  Google Scholar 

  • Lyson, T. R., & Bever, G. S. (2020). Origin and evolution of the turtle body plan. Annual Review of Ecology, Evolution, and Systematics, 51. https://doi.org/10.1146/annurev-ecolsys-110218-024746.

  • Mailho-Fontana, P. L., Antoniazzi, M. M., Alexandre, C., Pimenta, D. C., Sciani, J. M., Brodie, E. D., Jr., & Jared, C. (2020). Morphological evidence for an oral venom system in caecilian amphibians. iScience, 23, 1–9.

    Article  Google Scholar 

  • Modesto, S. P., & Anderson, J. S. (2004). The phylogenetic definition of Reptilia. Systematic Biology, 53, 815–821. https://doi.org/10.1080/10635150490503026.

    Article  PubMed  Google Scholar 

  • Nelson, J. S., Grande, T. C., & Wilson, M. V. (2016). Fishes of the world. Hoboken: Wiley.

    Book  Google Scholar 

  • Pardo, J. D., Small, B. J., & Huttenlocker, A. K. (2017a). Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia. PNAS, 114(27), E5389–E5395.

    Article  Google Scholar 

  • Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E., & Anderson, J. S. (2017b). Hidden morphological diversity among early tetrapods. Nature, 546, 642–645. https://doi.org/10.1038/nature22966.

    Article  PubMed  Google Scholar 

  • Qiao, T., King, B., Long, J. A., Ahlberg, P. E., & Zhu, M. (2016). Early gnathostome phylogeny revisited: Multiple method consensus. PLoS One, 11(9), e0163157.

    Article  Google Scholar 

  • Rowe, T. B. (2020). The emergence of mammals. In J. H. Kaas (Ed.), Evolutionary neuroscience (pp. 263–319). London: Academic.

    Chapter  Google Scholar 

  • Seymor, R. S., Bennett-Stamper, C. L., Johnston, S. D., Carrier, D. R., & Grigg, G. C. (2004). Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiological and Biochemical Zoology, 77, 1051–1067. https://doi.org/10.1086/422766.

    Article  Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (1997). Fossil, genes and the evolution of animal limbs. Nature, 388, 639–648.

    Article  Google Scholar 

  • Stössel, I., Williams, E. A., & Higgs, K. T. (2016). Ichnology and depositional environment of the Middle Devonian Valentia Island tetrapod trackways, south-west Ireland. Palaeogeography, Palaeoclimatology, Palaeoecology, 462, 16–40.

    Article  Google Scholar 

  • Tanaka, M. (2016). Fins into limbs: Autopod acquisition and anterior elements reduction by modifying gene networks involving 5’Hox, Gli3, and Shh. Developmental Biology, 413(1), 1–7.

    Article  Google Scholar 

  • Tattersall, G. J., Leite, C. A. C., Sanders, C. E., Cadena, V., Andrade, D. V., Abe, A. S., & Milsom, W. K. (2016). Seasonal reproductive endothermy in tegu lizards. Science Advances, 2, e1500951. https://doi.org/10.1126/sciadv.1500951.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uetz, P., Freed, P., & Hošek, J. (2020). The reptile database. Retrieved from http://www.reptile-database.org

  • Wilkinson, M., Sherratt, E., Starace, F., & Gower, D. J. (2013). A new species of skin-feeding caecilian and the first report of reproductive mode in Microcaecilia (Amphibia: Gymnophiona: Siphonopidae). PLoS One, 8(3), 1–11.

    Google Scholar 

  • Zachos, F. E. (2020). Mammalian phylogenetics: A short overview of recent advances. In K. Hackländer & F. E. Zachos (Eds.), Handbook of the mammals of Europe: Past, present and future (pp. 1–18). Cham: Springer.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the following people for inputs on their groups of expertise: Angele R. Martins (Universidade de Brasília), Erin E. Maxwell (Staatliches Museum für Naturkunde Stuttgart), Jason D. Pardo (University of Calgary), Lucas M. Camargos (Staatliches Museum für Naturkunde Stuttgart), Mariela C. Castro (Universidade Federal de Catalão), and Pedro L. Mailho-Fontana (Instituto Butantan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Slobodian .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Slobodian, V., Rizzato, P.P., Sobral, G. (2021). Vertebrates (Chordata). In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1426-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_1426-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Vertebrates (Chordata)
    Published:
    06 April 2021

    DOI: https://doi.org/10.1007/978-3-319-47829-6_1426-2

  2. Original

    Vertebrates (Chordata)
    Published:
    10 December 2020

    DOI: https://doi.org/10.1007/978-3-319-47829-6_1426-1