Skip to main content

Memories

  • Chapter
Nanometer CMOS ICs
  • 3642 Accesses

Abstract

Memories are circuits designed for the storage of digital values. In a computer system, memories are used in a large variety of storage applications, depending on memory capacity, cost and speed. FigureĀ 6.1 shows the use of memory storage at different hierarchy levels of a computer system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Information about memories is usually confidential and is often proprietary. Many of the relatively few books available on the subject are therefore outdated. This reference list therefore only contains a few published books and the titles of interesting journals and digests on relevant conferences. In this edition it is extended with many references on state-of-the-art material from conferences, publications, and internet sites.

References

Information about memories is usually confidential and is often proprietary. Many of the relatively few books available on the subject are therefore outdated. This reference list therefore only contains a few published books and the titles of interesting journals and digests on relevant conferences. In this edition it is extended with many references on state-of-the-art material from conferences, publications, and internet sites.

  1. K. Pagiamtzis et al., Content-addressable memory (CAM) circuits and architectures: a tutorial and survey. IEEE J. Solid-State Circuits 41 (3), 712ā€“727 (2006)

    ArticleĀ  Google ScholarĀ 

  2. K. Noda et al., A 1.9ā€‰Ī¼m2 Loadless CMOS Four Transistor SRAM Cell in a 0.18ā€‰Ī¼m Logic Technology. IEDM Digest of Technical Papers, Dec 1998, pp. 643ā€“646

    Google ScholarĀ 

  3. K. Takeda et al., A 16ā€‰Mb 400ā€‰MHz loadless CMOS 4-Transistor SRAM Macro. ISSCC Digest of Technical Papers, Feb 2000

    BookĀ  Google ScholarĀ 

  4. L. Chang et al., Stable SRAM Cell Design for the 32ā€‰nm Node and Beyond, in 2005 Symposium on VLSI Technology, Digest of Technical Papers, pp. 128ā€“129

    Google ScholarĀ 

  5. S.M. Jung et al., Highly Area Efficient and Cost Effective Double Stacked S (Stacked Single-crystal Si) peripheral CMOS SSTFT and SRAM Cell Technology for 512ā€‰Mb SRAM. IEDM 2004, Digest of Technical Papers, pp. 265ā€“268

    Google ScholarĀ 

  6. J. Keane et al., 5.6Mb/mm2 1R1W 8T SRAM Arrays Operating down to 560mV Utilizing Small-Signal Sensing with Charge-Shared Bitline and Asymmetric Sense Amplifier in 14nm FinFET CMOS Technology Charge-Shared Bitline and Asymmetric Sense Amplifier in 14nm FinFET CMOS Technology. ISSCC 2016, Digest of Technical Papers, Feb 2016, pp. 308ā€“309

    Google ScholarĀ 

  7. A Reconfigurable Dual-Port Memory with Error Detection and Correction in 28nm FDSOI. ISSCC 2016, Digest of Technical Papers, Feb 2016, pp. 310ā€“311

    Google ScholarĀ 

  8. E. Karl et al., The impact of assist-circuit design for 22ā€‰nm SRAM and beyond. IEDM Technical Digest, pp. 561ā€“564 (2012)

    Google ScholarĀ 

  9. T. Song et al., A 10nm FinFET 128Mb SRAM with Assist Adjustment System for Power, Performance and Area Optimization. ISSCC 2016, Digest of Technical Papers, Feb 2016, pp. 306ā€“307

    Google ScholarĀ 

  10. J. Wan et al., Z2-FET used as 1-Transistor High-Speed DRAM. ESSDERC, Digest of Technical Papers (2012)

    Google ScholarĀ 

  11. Designing for 1ā€‰GB DDR SDRAM. Micron Technology, Technical Note, 2003

    Google ScholarĀ 

  12. C. Cho et al., A 6F2 DRAM Technology in 60ā€‰nm era for Gigabit Densities, in 2005 Symposium on VLSI Technology, Digest of Technical Papers, pp. 36ā€“37

    Google ScholarĀ 

  13. J.A. Mandelman et al., Challenges for future directions for the scaling of DRAM. IBM J. Res. Dev. 46 (2/3), 187ā€“212 (2002)

    ArticleĀ  Google ScholarĀ 

  14. H. Seidl et al., A fully integrated Al2O3 trench capacitor DRAM for sub-100ā€‰nm technology. IEDM, 2002

    Google ScholarĀ 

  15. C. Hampel, High-speed DRAMs keep pace with high-speed systems. EDN, Feb 3, 1997, pp. 141ā€“148

    Google ScholarĀ 

  16. C. Green, Analyzing and implementing SDRAM and SGRAM controllers. EDN, Feb 2, 1998, pp. 155ā€“166

    Google ScholarĀ 

  17. R. Faramarzi, High Speed Trends In Memory Market. Keynote address, Jedex Conference, Oct 25ā€“26, 2006, Shanghai, http://www.jedexchina.org/program.htm

  18. T. Schmitz, The Rise of Serial Memory and the Future of DDR, Xilinx, WP456 (v1.1) Mar 23, 2015

    Google ScholarĀ 

  19. Samsung Develops Ultra-fast Graphics Memory: A More Advanced GDDR4 at Higher Density, Press Release (Feb 14, 2006/SEC)

    Google ScholarĀ 

  20. Understanding Video (VRAM) and SGRAM operation (1996). http://www.chips.ibm.com/products/memory

  21. D. Bursky, Graphics-Optimized DRAMs deliver Top-Notch Performance. Electronic design, Mar 23, 1998, pp. 89ā€“100

    Google ScholarĀ 

  22. K.-h. Kim et al., An 8ā€‰Gb/s/pin 9.6ā€‰ns Row-Cycle 288ā€‰Mb Deca-Data Rate SDRAM with an I/O error-detection Scheme. ISSCC Digest of Technical Papers, Feb 2006, pp.154ā€“155

    Google ScholarĀ 

  23. T. Nagai, A 65ā€‰nm Low-Power Embedded DRAM with Extended Data-Retention Sleep Mode. ISSCC Digest of Technical Papers, Feb 2006, pp.164ā€“165

    Google ScholarĀ 

  24. P. Fazan, Z-RAM zero capacitor Embedded memory technology addresses dual requirements of die size and scalability (Innovative Silicon Inc, 2005). http://clients.concept-web.ch/is/en/technology_white_paper.php#

    Google ScholarĀ 

  25. B. Dipert, EEPROM, survival of the fittest, EDN, Jan 15, 1998, pp. 77ā€“90

    Google ScholarĀ 

  26. P. Clarke, Intel, Micron offer 128-Gbit NAND flash memory, EETimes, EETIMES, 12-6-2011

    Google ScholarĀ 

  27. L. Mearian, Samsung hits high gear, rolls out densest flash chip. Computer world, Apr 11, 2013, http://www.computerworld.com/s/article/9238339/Samsung_hits_high_gear_rolls_out_densest_flash_chip

  28. S. Aritome, NAND Flash Memory Technologies (Wiley, New York, 2015)

    BookĀ  Google ScholarĀ 

  29. Y. Cai et al., Threshold voltage distribution in MLC NAND flash memory: characterization, analysis, and modeling, in Proceedings of the Conference on Design, Automation and Test, pp. 1285ā€“1290, Mar 2013

    Google ScholarĀ 

  30. JEDEC Solid State Technology Association, Stress-Test-Driven Qualification of Integrated Circuits, JESD47G.01, Apr 2010, http://www.jedec.org/

  31. Ed Korczynski, 3D-NAND Deposition and Etch Integration. Semiconductor Manufacturing & Design Community, Sept 2016, http://semimd.com/blog/tag/3d-nand/

  32. K. Gibb, First Look at Samsungā€™s 48L 3D V-NAND Flash. EE Times, Apr 6, 2016

    Google ScholarĀ 

  33. D. Kang et al., 256Gb 3b/Cell V-NAND Flash Memory with 48 Stacked WL Layers. ISSCC Digest of Technical Papers, pp. 130ā€“131

    Google ScholarĀ 

  34. K. Gibb, Micronā€™s 3D NAND Innovative Fabrication Process. EE Times, July 13, 2016

    Google ScholarĀ 

  35. B. Prince, Vertical 3-D Memory Technologies (Wiley, New York, 2014). ISBN: 978-1-118-76051-2

    BookĀ  Google ScholarĀ 

  36. R. Merritt, 3D XPoint Steps Into the Light. EE Times, Jan 14, 2016

    Google ScholarĀ 

  37. C. Mellor, Just ONE THOUSAND times BETTER than FLASH! Intel, Micronā€™s amazing claim, 28 Jul 2015, The Register, http://www.theregister.co.uk/2015/07/28/intel_micron_3d_xpoint/

  38. B. Tallis, Samsung at Flash Memory Summit: 64-layer V-NAND, Bigger SSDs, Z-SSD, http://www.anandtech.com/show/10560/, Aug 11, 2016

  39. K. Hoya et al., A 64ā€‰Mb Chain FeRAM with Quad-BL Architecture and 200MB/s Burst Mode. ISSCC Digest of Technical Papers, Feb 2006, pp. 134ā€“135

    Google ScholarĀ 

  40. R. Wilson, MRAM Steps to 16Mbit. Electronics Weekly, June 23, 2004

    Google ScholarĀ 

  41. J. MĆ¼ller et al., Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects. ECS J. Solid State Sci. Technol. 4 (5), N30ā€“N35 (2015)

    ArticleĀ  Google ScholarĀ 

  42. J. MĆ¼ller et al., Ferroelectric Hafnium Oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories, in International Electronic Device Meeting (IEDM), pp. 280ā€“283 (2013)

    Google ScholarĀ 

  43. T.P. Ma, FEDRAM: A capacitor-less DRAM based on ferroelectric-gated field-effect transistor, in 2014 IEEE 6th International Memory Workshop (IMW), 18ā€“21 May 2014

    Google ScholarĀ 

  44. Z. Xizhen, FeFET logic circuits for operating a 64 kb FeNAND flash memory array. Integr. Ferroelectr. 132 (1), 114ā€“121 (2016)

    Google ScholarĀ 

  45. B. Dipert, FRAM: ready to ditch niche? EDN, Apr 10, 1997, pp. 93ā€“107

    Google ScholarĀ 

  46. W.Y. Cho et al., A 0.18ā€‰Ī¼m 3.0ā€‰V 64ā€‰Mb nonvolatile phase-transition random access memory (PRAM). 2004 ISSCC Digest of Technical Papers (2004), pp. 40ā€“41

    Google ScholarĀ 

  47. S. Kang et al., A 0.1ā€‰Ī¼m 1.8ā€‰V 256ā€‰Mb 66ā€‰MHz Synchronous Burst PRAM. ISSCC Digest of Technical Papers, Feb 2006, pp.140ā€“141

    Google ScholarĀ 

  48. M. LaPedus, Samsung to ship MCP with phase-change. EEā€”Times 28-04-2010

    Google ScholarĀ 

  49. G.W. Burr et al., Phase change memory technology. J. Vac. Sci. Technol. B 28 (2), 223ā€“262 (2010)

    ArticleĀ  Google ScholarĀ 

  50. Kurzweil AI, Will phase-change memory replace flash memory? Sept 2013

    Google ScholarĀ 

  51. X. Zhou et al., Phase transition characteristics of Al-Sb phase change materials for phase change memory application. Appl. Phys. Lett. 103 (7) (2013)

    Google ScholarĀ 

  52. X. Chen et al., Buffer-enhanced electrical-pulse-induced-resistive memory effect in thin film perovskites. Jpn. J. Appl. Phys. Part 1 45 (3A), 1602ā€“1606 (2006)

    Google ScholarĀ 

  53. P. Clarke, Resistive RAM sets chip companies racing. EETimes, 04-24-2006

    Google ScholarĀ 

  54. H.Y. Lee et al., Evidence and solution of over-RESET problem for HfO tenrmx based resistive memory with sub-ns switching speed and high endurance, in Proceedings of the IEDM (2010), pp. 19.7.1ā€“19.7.4

    Google ScholarĀ 

  55. L. Goux et al., Ultralow sub-500nA operating current high-performance TiNāˆ–Al2O3āˆ–HfO2āˆ–Hfāˆ–TiN bipolar RRAM achieved through understanding-based stack-engineering, in Symposia on VLSI Technology, Digest of Tech. Papers, pp. 159 (2012)

    Google ScholarĀ 

  56. T.-Y. Liu, T.H. Yan et al., A 130.7 mm2 two-layer 32-Gbit ReRAM memory device in 24-nm technology. Proc. ISSCC, paper 12.1 (2013)

    Google ScholarĀ 

  57. H. Hƶnigschmid et al., A non-volatile 2ā€‰Mbit CBRAM memory core featuring advanced read and program control, in Proceedings of 2006 Symposium on VLSI Circuits, pp. 138ā€“139

    Google ScholarĀ 

  58. W.J. Donath, Placement and average interconnections lengths of computer logic. IEEE Trans. Circ. Syst. 26 (4), 272 (1979)

    Google ScholarĀ 

  59. Semiconductors Industrial Associations, ITRS roadmap, yearly update, http://www.itrs.net

  60. SRAM Sessions, International Solid States Circuits Conference 2005 and 2006, ISSCC Digest of Technical Papers, 2005 and 2006

    Google ScholarĀ 

  61. A. Fazio et al., ETOXTM Flash Memory Technology: Scaling and Integration Challenges, May 16, 2002, http://developer.intel.com/technology/itj/2002/volume06issue02/art03_flashmemory/vol6iss2_art03.pdf

Further Reading

  1. B. Prince, Semiconductor Memories: A Handbook of Design, Manufacture and Application (Wiley, New York, 1996)

    Google ScholarĀ 

  2. W.J. McClean, Status 1999, A report on the IC industry. ICE Corporation, Scottsdale, Arizona (1999)

    Google ScholarĀ 

  3. B. Prince, High Performance Memories (Wiley, New York, 1996)

    Google ScholarĀ 

  4. IEEE Digest of Technical Papers of the International Solid State Circuit Conference. The ISSCC is held every year in February in San Francisco

    Google ScholarĀ 

  5. IEEE Journal of Solid-State Circuits

    Google ScholarĀ 

  6. IEDM Digest of Technical Papers, Since 1984

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

J.M. Veendrick, H. (2017). Memories. In: Nanometer CMOS ICs. Springer, Cham. https://doi.org/10.1007/978-3-319-47597-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47597-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47595-0

  • Online ISBN: 978-3-319-47597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics