Skip to main content

Cardanol-Based Supramolecular Gels

  • Chapter
  • First Online:
Cashew Nut Shell Liquid
  • 621 Accesses

Abstract

With the increasing interest in the development of new materials from bio-renewable resources seen in the last couple of decades, great emphasis has been put in the use of bio-renewable materials as building blocks for the preparation of bio-based polymers and composites. Lately, cardanol, a phenol derived from extracts of cashew nut shells, has gained attention due to its abundance, lack of competing applications, and great potential for the preparation of supramolecular structures through various routes. In this chapter, an initial overview of supramolecular gels is presented, covering background information on the terminology, chemical structure, properties, and the starting materials used in their synthesis. A section is dedicated to the latest advancements of cardanol-based gels, followed by a section describing applications involving cardanol-based gels and related self-assembled materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836. doi:10.1039/B417081B

    Article  Google Scholar 

  2. Steed JW (2011) Supramolecular gel chemistry: developments over the last decade. Chem Commun 47:1379–1383. doi:10.1039/C0CC03293J

    Article  Google Scholar 

  3. Yang X, Zhang G, Zhang D (2012) Stimuli responsive gels based on low molecular weight gelators. J Mater Chem 22:38–50. doi:10.1039/C1JM13205A

    Article  Google Scholar 

  4. Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1:437–442. doi:10.1038/nchem.283

    Article  Google Scholar 

  5. Kumar DK, Steed JW (2014) Supramolecular gel phase crystallization: orthogonal self-assembly under non-equilibrium conditions. Chem Soc Rev 43:2080–2088. doi:10.1039/C3CS60224A

    Article  Google Scholar 

  6. Dastidar P (2008) Supramolecular gelling agents: Can they be designed? Chem Soc Rev 37:2699. doi:10.1039/b807346e

    Article  Google Scholar 

  7. Steed JW (2010) Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. Chem Soc Rev 39:3686. doi:10.1039/b926219a

    Article  Google Scholar 

  8. Segarra-Maset MD, Nebot VJ, Miravet JF, Escuder B (2013) Control of molecular gelation by chemical stimuli. Chem Soc Rev 42:7086–7098. doi:10.1039/C2CS35436E

    Article  Google Scholar 

  9. Buerkle LE, Rowan SJ (2012) Supramolecular gels formed from multi-component low molecular weight species. Chem Soc Rev 41:6089. doi:10.1039/c2cs35106d

    Article  Google Scholar 

  10. Piepenbrock M-OM, Lloyd GO, Clarke N, Steed JW (2010) Metal- and anion-binding supramolecular gels. Chem Rev 110:1960–2004. doi:10.1021/cr9003067

    Article  Google Scholar 

  11. Smith DK (2010) Supramolecular gels: Building bridges. Nat Chem 2:162–163. doi:10.1038/nchem.566

    Article  Google Scholar 

  12. Yu G, Yan X, Han C, Huang F (2013) Characterization of supramolecular gels. Chem Soc Rev 42:6697–6722. doi:10.1039/C3CS60080G

    Article  Google Scholar 

  13. Abdallah DJ, Weiss RG (2000) Organogels and low molecular mass organic gelators. Adv Mater 12:1237–1247. doi:10.1002/1521-4095(200009)12:17<1237:AID-ADMA1237>3.0.CO;2-B

    Article  Google Scholar 

  14. John G, Vemula PK (2006) Design and development of soft nanomaterials from biobased amphiphiles. Soft Matter 2:909–914. doi:10.1039/B609422H

    Article  Google Scholar 

  15. Weng W, Beck JB, Jamieson AM, Rowan SJ (2006) Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J Am Chem Soc 128:11663–11672. doi:10.1021/ja063408q

    Article  Google Scholar 

  16. Beck JB, Rowan SJ (2003) Multistimuli, multiresponsive metallo-supramolecular polymers. J Am Chem Soc 125:13922–13923. doi:10.1021/ja038521k

    Article  Google Scholar 

  17. Kotova O, Daly R, dos Santos CMG et al (2015) Cross-linking the fibers of supramolecular gels formed from a tripodal terpyridine derived ligand with d-block metal ions. Inorg Chem 54:7735–7741. doi:10.1021/acs.inorgchem.5b00626

    Article  Google Scholar 

  18. Li X, Kuang Yi, Shi J et al (2011) Multifunctional, biocompatible supramolecular hydrogelators consist only of nucleobase, amino acid, and glycoside. J Am Chem Soc 133:17513–17518. doi:10.1021/ja208456k

    Article  Google Scholar 

  19. Suzuki M, Hanabusa K (2009) l-Lysine-based low-molecular-weight gelators. Chem Soc Rev 38:967–975. doi:10.1039/B816192E

    Article  Google Scholar 

  20. van Bommel KJC, van der Pol C, Muizebelt I et al (2004) Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. Angew Chem Int Ed 43:1663–1667. doi:10.1002/anie.200352396

    Article  Google Scholar 

  21. Boekhoven J, Poolman JM, Maity C et al (2013) Catalytic control over supramolecular gel formation. Nat Chem 5:433–437. doi:10.1038/nchem.1617

    Article  Google Scholar 

  22. Placin F, Desvergne J-P, Lassègues J-C (2001) Organogel electrolytes based on a low molecular weight gelator: 2,3-bis(n-decyloxy)anthracene. Chem Mater 13:117–121. doi:10.1021/cm001118h

    Article  Google Scholar 

  23. Hanabusa K, Hiratsuka K, Kimura M, Shirai H (1999) Easy preparation and useful character of organogel electrolytes based on low molecular weight gelator. Chem Mater 11:649–655. doi:10.1021/cm980528r

    Article  Google Scholar 

  24. Hirst AR, Coates IA, Boucheteau TR et al (2008) Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc 130:9113–9121. doi:10.1021/ja801804c

    Article  Google Scholar 

  25. Rajaganesh R, Gopal A, Mohan Das T, Ajayaghosh A (2012) Synthesis and properties of amphiphilic photoresponsive gelators for aromatic solvents. Org Lett 14:748–751. doi:10.1021/ol203294v

    Article  Google Scholar 

  26. Vemula PK, John G (2008) Crops: a green approach toward self-assembled soft materials. Acc Chem Res 41:769–782. doi:10.1021/ar7002682

    Article  Google Scholar 

  27. Balachandran VS, Jadhav SR, Vemula PK, John G (2012) Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chem Soc Rev 42:427–438. doi:10.1039/C2CS35344J

    Article  Google Scholar 

  28. Voirin C, Caillol S, Sadavarte NV et al (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142–3162. doi:10.1039/C3PY01194A

    Article  Google Scholar 

  29. John G, Masuda M, Okada Y et al (2001) Nanotube formation from renewable resources via coiled nanofibers. Adv Mater 13:715–718

    Article  Google Scholar 

  30. John G, Jung JH, Masuda M, Shimizu T (2004) Unsaturation effect on gelation behavior of aryl glycolipids. Langmuir 20:2060–2065. doi:10.1021/la030177h

    Article  Google Scholar 

  31. John G, Minamikawa H, Masuda M, Shimizu T (2003) Liquid crystalline cardanyl β-d-glucopyranosides. Liq Cryst 30:747–749. doi:10.1080/0267829021000047516

    Article  Google Scholar 

  32. Anilkumar P, Jayakannan M (2010) A novel supramolecular organogel nanotubular template approach for conducting nanomaterials. J Phys Chem B 114:728–736. doi:10.1021/jp909016r

    Article  Google Scholar 

  33. Anilkumar P, Jayakannan M (2006) New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 22:5952–5957. doi:10.1021/la060173n

    Article  Google Scholar 

  34. Antony MJ, Jayakannan M (2009) Self-assembled anionic micellar template for polypyrrole, polyaniline, and their random copolymer nanomaterials. J Polym Sci Part B Polym Phys 47:830–846. doi:10.1002/polb.21689

    Article  Google Scholar 

  35. Anilkumar P, Jayakannan M (2007) Single-molecular-system-based selective micellar templates for polyaniline nanomaterials: control of shape, size, solid state ordering, and expanded chain to coillike conformation. Macromolecules 40:7311–7319. doi:10.1021/ma071292s

    Article  Google Scholar 

  36. Lalitha K, Jenifer P, Prasad YS et al (2014) A self-assembled π-conjugated system as an anti-proliferative agent in prostate cancer cells and a probe for intra-cellular imaging. RSC Adv 4:48433–48437. doi:10.1039/C4RA07710E

    Article  Google Scholar 

  37. Mahata D, Mandal SM, Bharti R et al (2014) Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability. Int J Biol Macromol 69:5–11. doi:10.1016/j.ijbiomac.2014.05.017

    Article  Google Scholar 

  38. Teerasripreecha D, Phuwapraisirisan P, Puthong S et al (2012) In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis. BMC Complement Altern Med 12:27. doi:10.1186/1472-6882-12-27

    Article  Google Scholar 

  39. De Maria P, Filippone P, Fontana A et al (2005) Cardanol as a replacement for cholesterol into the lipid bilayer of POPC liposomes. Colloids Surf B Biointerfaces 40:11–18. doi:10.1016/j.colsurfb.2004.09.007

    Article  Google Scholar 

  40. John G, Jung JH, Minamikawa H et al (2002) Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly. Chem Eur J 8:5494–5500. doi:10.1002/1521-3765(20021202)8:23<5494:AID-CHEM5494>3.0.CO;2-P

    Article  Google Scholar 

  41. Silverman JR, Samateh M, John G (2015) Functional self-assembled lipidic systems derived from renewable resources. Eur J Lipid Sci Technol 118:47–55. doi:10.1002/ejlt.201500198

    Article  Google Scholar 

  42. Bhavsar GA, Asha SK (2011) Pentadecyl phenol- and cardanol-functionalized fluorescent, room-temperature liquid-crystalline perylene bisimides: effect of pendant chain unsaturation on self-assembly. Chem Eur J 17:12646–12658. doi:10.1002/chem.201101011

    Article  Google Scholar 

  43. Anilkumar P, Jayakannan M (2007) Fluorescent tagged probing agent and structure-directing amphiphilic molecular design for polyaniline nanomaterials via self-assembly process. J Phys Chem C 111:3591–3600. doi:10.1021/jp066428n

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael L. Quirino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Garrison, T.F., Scholz, A., Grimm, H., Quirino, R.L. (2017). Cardanol-Based Supramolecular Gels. In: Anilkumar, P. (eds) Cashew Nut Shell Liquid. Springer, Cham. https://doi.org/10.1007/978-3-319-47455-7_7

Download citation

Publish with us

Policies and ethics