Skip to main content

Ions of Endometallofullerenes in the Gas Phase

  • Chapter
  • First Online:
Endohedral Fullerenes: Electron Transfer and Spin

Part of the book series: Nanostructure Science and Technology ((NST))

  • 922 Accesses

Abstract

This chapter describes the studies of the endometallofullerene (EMF) ions in the gas phase by various mass spectrometric methods. Historically, mass spectrometry was the first method to indicate the possible existence of EMFs, which happened several years before the discovery of their bulk arc-discharge synthesis. The studies of the ions of EMFs in the gas phase often preceded studies by other techniques that require substantial quantities of EMFs and provided a lot of information on their electronic properties and reactivity . In this chapter, particular attention is devoted to the gas-phase reactions of EMF ions with small molecules, and to the studies of the electron affinity of EMFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heath JR, Obrien SC, Zhang Q et al (1985) Lanthanum complexes of spherodal carbon shells. J Am Chem Soc 107(25):7779–7780

    Article  Google Scholar 

  2. Kroto HW, Heath JR, Obrien SC et al (1985) C60 - Buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  3. Campbell EEB, Rohmund F (2000) Fullerene reactions. Rep Prog Phys 63(7):1061–1109

    Article  Google Scholar 

  4. Liu SY, Sun SQ (2000) Recent progress in the studies of endohedral metallofullerenes. J Organomet Chem 599(1):74–86

    Article  Google Scholar 

  5. Wang LS, Alford JM, Chai Y et al (1993) Photoelectron-spectroscopy and electronic-structure of Ca@C60. Z Phys D-Atoms Mol Clusters 26:S297–S299

    Article  Google Scholar 

  6. Hoffman K, Norris B, Merle R et al (1998) Near infrared Er3+ photoluminescence from erbium metallofullerenes. Chem Phys Lett 284(3):171–176

    Article  Google Scholar 

  7. Kimura T, Sugai T, Shinohara H (1999) Production and mass spectroscopic characterization of metallocarbon clusters incorporating Sc, Y, and Ca atoms. Int J Mass Spectrom 188(3):225–232

    Article  Google Scholar 

  8. Kong XL, Bao XD (2014) Generation of M@C +2n (M = Ca, Sr, Ba, 2n = 50-230) by laser ablation of graphene. Int J Mass Spectrom 372:1–7

    Article  Google Scholar 

  9. Bao XD, Kong XL (2015) Generation of M@C +2n (M = K, Rb, Cs, 2n = 80-220) by laser ablation of graphene. Rapid Commun Mass Spectrom 29(19):1774–1778

    Article  Google Scholar 

  10. Javahery G, Petrie S, Wang J et al (1993) Gas-phase reactions of fullerene monocations, dications, and trications with nitriles. J Am Chem Soc 115(21):9701–9707

    Article  Google Scholar 

  11. Bohme DK, Boltalina OV, Hvelplund P (2000) Fullerenes and fullerene ions in the gas phase. Fullerenes: Chem Phys Technol 481

    Google Scholar 

  12. Böhme DK (1999) 1998 JC Polanyi Award Lecture fullerene ions in the gas phase: chemistry as a function of charge state. Can J Chem 77(9):1453–1464

    Article  Google Scholar 

  13. Hettich R, Lahamer A, Zhou L et al (1999) Investigation of the fragmentation and oxygen reactivity of endohedral metallofullerenes M@C60. Int J Mass Spectrom 182:335–348

    Article  Google Scholar 

  14. Lassesson A, Gromov A, Jonsson M et al (2003) Oxygen reactivity of La@C82 investigated with laser desorption mass spectrometry. Int J Mass Spectrom 228(2–3):913–920

    Article  Google Scholar 

  15. Hao CY, Liu ZY, Guo XH et al (1997) Gas phase derivatization of endohedral metallofullerenes R@C82 and R2@C80 (R = Nd, Ce). Rapid Commun Mass Spectrom 11(15):1677–1680

    Article  Google Scholar 

  16. Sun D, Liu Z, Liu Z et al (1997) Gas phase derivations of endohedral metallofullerenes by ion-molecular reactions. Fullerenes Nanotubes Carbon Nanostruct 5(7):1461–1477

    Google Scholar 

  17. Wang XB, Woo HK, Wang LS (2005) Vibrational cooling in a cold ion trap: Vibrationally resolved photoelectron spectroscopy of cold C60 − anions. J Chem Phys 123:051106/051101

    Google Scholar 

  18. Wang X-B, Woo H-K, Huang X et al (2006) Direct experimental probe of the on-site coulomb repulsion in the doubly charged fullerene anion C70 2−. Phys Rev Lett 96(14):143002

    Article  Google Scholar 

  19. Jin C, Hettich RL, Compton RN et al (1994) Attachment of two electrons of C60F48: Coulomb barriers in doubly charged anions. Phys Rev Lett 73(21):2821–2824

    Article  Google Scholar 

  20. Wang LS, Conceicao J, Jin CM et al (1991) Threshold photodetachment of cold C60. Chem Phys Lett 182(1):5–11

    Article  Google Scholar 

  21. Huang D-L, Dau PD, Liu H-T et al (2014) High-resolution photoelectron imaging of cold C60 − anions and accurate determination of the electron affinity of C60. J Chem Phys 140(22):224315

    Article  Google Scholar 

  22. Ioffe I, Ievlev A, Boltalina O et al (2002) Electron affinity of some trimetallic nitride and conventional metallofullerenes. Int J Mass Spectrom 213(2):183–189

    Article  Google Scholar 

  23. Boltalina OV, Markov VY, Lukonin AY et al (eds) (1995) Mass spectrometric measurements of the equilibrium constants of ion-molecular reactions of fullerenes, fluorine derivatives and endohedrals. Electron and fluorine affinity estimates, vol 95–100. Recent advances in the chemistry and physics of fullerenes and related materials. The Electrochemical Society, Inc., Pennington

    Google Scholar 

  24. Boltalina OV, Dashkova EV, Sidorov LN (1996) Gibbs energies of gas-phase electron transfer reactions involving the larger fullerene anions. Chem Phys Lett 256(3):253–260

    Article  Google Scholar 

  25. Wang W, Ding J, Yang S et al (1997) Electrochem Soc Proc 97-14:186

    Google Scholar 

  26. Suzuki T, Kikuchi K, Oguri F et al (1996) Electrochemical properties of fullerenolanthanides. Tetrahedron 52(14):4973–4982

    Article  Google Scholar 

  27. Nagase S, Kobayashi K, Akasaka T (1996) Endohedral metallofullerenes: new spherical cage molecules with interesting properties. Bull Chem Soc Japan 69(8):2131–2142

    Article  Google Scholar 

  28. Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57

    Article  Google Scholar 

  29. Takata M, Nishibori E, Umeda B et al (1997) Structure of endohedral dimetallofullerene Sc2@C84. Phys Rev Lett 78(17):3330

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  Google Scholar 

  31. Compton R, Tuinman A, Klots C et al (1997) Electron attachment to a negative ion: e + C84 − ⇌ C −284 . Phys Rev Lett 78(23):4367

    Article  Google Scholar 

  32. Kobayashi K, Nagase S (1998) Chem Phys Lett 282:325

    Article  Google Scholar 

  33. Hino S, Umishita K, Iwasaki K et al (1997) Photoelectron spectra of metallofullerenes, GdC82 and La2C80: electron transfer from the metal to the cage. Chem Phys Lett 281(1):115–122

    Article  Google Scholar 

  34. Lide DR (2004) CRC handbook of chemistry and physics, vol 85. CRC Press, New York

    Google Scholar 

  35. Broclawik E, Eilmes A (1998) Density functional study of endohedral complexes M@C60 (M = Li, Na, K, Be, Mg, Ca, La, B, Al): electronic properties, ionization potentials, and electron affinities. J Chem Phys 108(9):3498–3503

    Article  Google Scholar 

  36. Rohmund F, Bulgakov A, Hedén M et al (2000) Photoionisation and photofragmentation of Li@C60. Chem Phys Lett 323(1):173–179

    Article  Google Scholar 

  37. Hettich R, Ying Z, Compton R (1995) Recent advances in the chemistry and physics of fullerenes and related materials. In: Kadish, KM, Ruoff RS (eds). The Electrochemical Society, Inc., Pennington

    Google Scholar 

  38. Boltalina OV, Ioffe IN, Sorokin ID et al (1997) Electron affinity of some endohedral lanthanide fullerenes. J Phys Chem A 101(50):9561–9563

    Article  Google Scholar 

  39. Campanera JM, Bo C, Olmstead MM et al (2002) Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}∙Co(OEP)∙1.5(C6H6)∙0.3(CHCl3). J Phys Chem A 106(51):12356–12364

    Article  Google Scholar 

  40. Popov AA, Wang X-B (2016) Unpublished results

    Google Scholar 

  41. Scheier P, Dünser B, Wörgötter R et al (1994) Appearance and ionization energies of singly, doubly and triply charged C60 and its fragment ions produced by electron impact ionization. Int J Mass Spectrom Ion Processes 138:77–93

    Article  Google Scholar 

Download references

Acknowledgement

The author is grateful for partial support from the National Science Foundation (grants NSF/CHE 1362302, and CHE-1012468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Boltalina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Boltalina, O.V. (2017). Ions of Endometallofullerenes in the Gas Phase. In: Popov, A. (eds) Endohedral Fullerenes: Electron Transfer and Spin. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47049-8_4

Download citation

Publish with us

Policies and ethics