Skip to main content

Genomes of Rickettsia Species

  • Chapter
  • First Online:
Rickettsiales

Abstract

Rickettsia species are strictly intracellular Gram-negative bacteria that infect a variety of mammalian hosts, including humans. Many Rickettsia species are associated to arthropod vectors. Their adaptation to life within eukaryotic cells resulted in a progressive genomic degradation via pseudogenization of genes involved in various metabolisms. Paradoxically, some species exhibit conjugative plasmids and gene duplications. As the genomes from most species have been sequenced, we review here the main characteristics of rickettsial genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–40.

    Article  CAS  PubMed  Google Scholar 

  • Audoly G, Vincentelli R, Edouard S, Georgiades K, Mediannikov O, et al. (2011) Effect of rickettsial toxin VapC on its eukaryotic host. PLOS ONE 6: e26528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldridge GD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG (2008) Plasmids of the pRM/pRF Family Occur in Diverse Rickettsia species. Appl Environ Microbiol 74: 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Balraj P, El Karkouri K, Vestris G, Espinosa L, Raoult D, Renesto P (2008) RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii. PLoS One 3: e2582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bechah Y, El Karkouri K, Mediannikov O, Leroy Q, Pelletier N, et al. (2010) Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res 20: 655–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop-Lilly KA, Ge H, Butani A, Osborne B, Verratti K, et al. (2013) Genome Sequencing of four strains of Rickettsia prowazekii, the causative agent of epidemic typhus, including one flying squirrel isolate. Genome Announc 1 : pii: e00399–13.

    Google Scholar 

  • Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, et al. (2005) Molecular evolution of Rickettsia surface antigens: evidence of positive selection. Mol Biol Evol 22: 2073–2083.

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Ogata H, Robert C, Audic S, Claverie JM, et al. (2007) Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res 17: 1657–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardwell MM, Martinez JJ (2009) The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect immun 77: 5272–5280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Cardwell MM, Hermanas TM, Uchiyama T, Martinez JJ (2009) Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol 11: 629–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark TR, Noriea NF, Bublitz DC, Ellison DW, Martens C, et al. (2015) Comparative genome sequencing of Rickettsia rickettsii strains that differ in virulence. Infect immun 83: 1568–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SG (2007) Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 23: 511–520.

    Article  CAS  PubMed  Google Scholar 

  • Duan C, Xiong, Qi Y, Gong W, Jiao J, et al. (2014) Genomic and comparative genomic analyses of Rickettsia heilongjiangensis provide insight into its evolution and pathogenesis. Infect Genet Evol 26: 274–282.

    Article  CAS  PubMed  Google Scholar 

  • El Karkouri K, Pontarotti P, Raoult D, Fournier PE (2016) Origin and evolution of rickettsial plasmids. PLOS ONE 11: e0147492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Porcella SF, et al. (2008) Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 76: 542–550.

    Article  CAS  PubMed  Google Scholar 

  • Felsheim RF, Kurtti TJ, Munderloh UG (2009) Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLOS ONE 4: e8361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, et al. (1995) Whole-genome random sequençing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

    Article  CAS  PubMed  Google Scholar 

  • Fournier PE, Belghazi L, Robert C, El karkouri K, Richards AL, et al. (2008) Variations of plasmid content in Rickettsia felis. PLoS ONE 3: e2289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier PE, El Karkouri K., Leroy Q, Robert C, Giumelli B, et al. (2009) Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10: 166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier PE, Raoult D (2009) Intraspecies diversity of Rickettsia conorii. J Infect Dis 199: 1097–1098.

    Article  PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Fuxelius HH, Darby AC, Cho NH, Andersson SG. (2008) Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction. Genome Biol 9: R42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgiades K, Raoult D (2011) Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLOS ONE 6: e17962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, et al. (2009) An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLOS ONE 4: e4833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, et al. (2007) Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS ONE 2: e266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Driscoll TP, Verhoeve VI, Utsuki T, Husseneder C, et al. (2015a) Genomic diversification in strains of Rickettsia felis isolated from different arthropods. Genome Biol Evol 7: 35–56.

    Article  CAS  Google Scholar 

  • Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB, et al. (2012) A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 194: 376–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, et al. (2015b) Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 39: 47–80.

    PubMed  Google Scholar 

  • Gouin E, Egile C, Dehoux P, Villiers V, Adams J, et al. (2004) The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427: 457–461.

    Article  CAS  PubMed  Google Scholar 

  • Kaur SJ, Rahman MS, Ammerman NC, Beier-Sexton M, Ceraul SM, et al. (2012) TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi. J Bacteriol 194: 4920–4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Groisman EA (2010) An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 76: 1020–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Walker DH. (1998) RompA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microbial Pathogenesis 24: 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Matelska D, Kurkowska M, Purta E, Bujnicki JM, Dunin-Horkawicz S. (2016) Loss of conserved noncoding RNAs in genomes of bacterial endosymbionts. Genome Biol Evol 8: 426–438.

    Article  PubMed  PubMed Central  Google Scholar 

  • McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, et al. (2004) Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 186: 5842–5855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merhej V, Georgiades K, Raoult D. (2013) Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief Funct Genomics 12: 291–304.

    Article  CAS  PubMed  Google Scholar 

  • Merhej V, Notredame C, Royer-Carenzi M, Pontarotti P, Raoult D (2011) The rhizome of life: the sympatric Rickettsia felis paradigm demonstrates the random transfer of DNA sequences. Mol Biol Evol 28: 3213–3223.

    Article  CAS  PubMed  Google Scholar 

  • Merhej V, Raoult D (2011) Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 86: 379–405.

    Article  PubMed  Google Scholar 

  • Murray GG, Weinert LA, Rhule EL, Welch JJ (2016) The phylogeny of Rickettsia using different evolutionary signatures: how tree-like is bacterial evolution? Syst Biol 65: 265–279.

    Article  PubMed  Google Scholar 

  • Ogata H, Audic S, Abergel C, Fournier PE, Claverie JM (2002) Protein coding palindromes are a unique but recurrent feature in Rickettsia. Genome Res 12: 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata H, Audic S, Renesto-Audiffren P, Fournier PE, Barbe V, et al. (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293: 2093–2098.

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, La Scola B, Audic S, Renesto P, Blanc G, et al. (2006) Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLOS Genet 2: e76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogata H, Renesto P, Audic S, Robert C, Blanc G, et al. (2005) The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3: e248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paddock CD, Denison AM, Lash RR, Liu L, Bollweg BC, et al. (2014) Phylogeography of Rickettsia rickettsii genotypes associated with fatal Rocky Mountain spotted fever. Am J Trop Med Hyg 91: 589–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, et al. (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26: 657–702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Radulovic S, Troyer JM, Beier MS, Lau AOT, Azad AF (1999) Identification and molecular analysis of the gene encoding Rickettsia typhi hemolysin. Infect Immun 67: 6104–6108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renesto P, Ogata H, Audic S, Claverie JM, Raoult D (2005) Some lessons from Rickettsia genomics. FEMS Microbiol Rev 29: 99–117.

    Article  CAS  PubMed  Google Scholar 

  • Riley SP, Patterson JL, Martinez JJ (2012) The rickettsial OmpB beta-peptide of Rickettsia conorii is sufficient to facilitate factor H-mediated serum resistance. Infect Immun 80: 2735–2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley SP, Patterson JL, Nava S, Martinez JJ (2014) Pathogenic Rickettsia species acquire vitronectin from human serum to promote resistance to complement-mediated killing. Cell Microbiol 16: 849–861.

    Article  CAS  PubMed  Google Scholar 

  • Rolain JM, Bitam I, Buffet S, Marie JL, Bourry O, et al. (2009) Presence or absence of plasmid in Rickettsia felis depending on the source of fleas. Clin Microbiol Infect 15 Suppl 2: 296–7.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder CL, Narra HP, Rojas M, Sahni A, Patel J, et al. (2015) Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 16: 1075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinert LA, Welch JJ, Jiggins FM (2009) Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally. Proc Biol Sci 276: 3619–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Yu T, Bao Q, Zhao F (2009) Evidence of extensive homologous recombination in the core genome of Rickettsia. Comp Funct Genomics 510270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Edouard Fournier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Abou-Abdallah, R., El Karkouri, K., Raoult, D., Fournier, PE. (2016). Genomes of Rickettsia Species. In: Thomas, S. (eds) Rickettsiales. Springer, Cham. https://doi.org/10.1007/978-3-319-46859-4_20

Download citation

Publish with us

Policies and ethics