Skip to main content

The Aminoacyl-tRNA Synthetase Complex

  • Chapter
  • First Online:
Macromolecular Protein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 83))

Abstract

Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agou F, Mirande M (1997) Aspartyl-tRNA synthetase from rat – In vitro functional analysis of its assembly into the multisynthetase complex. Eur J Biochem 243:259–267

    Article  CAS  PubMed  Google Scholar 

  • Agou F, Quevillon S, Kerjan P, Latreille MT, Mirande M (1996) Functional replacement of hamster lysyl-tRNA synthetase by the yeast enzyme requires cognate amino acid sequences for proper tRNA recognition. Biochemistry 35:15322–15331

    Article  CAS  PubMed  Google Scholar 

  • Ahn HC, Kim S, Lee BJ (2003) Solution structure and p43 binding of the p38 leucine zipper motif: coiled-coil interactions mediate the association between p38 and p43. FEBS Lett 542:119–124

    Article  CAS  PubMed  Google Scholar 

  • Arif A, Jia J, Mukhopadhyay R, Willard B, Kinter M, Fox PL (2009) Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol Cell 35:164–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahuzac B, Berthonneau E, Birlirakis N, Guittet E, Mirande M (2000) A recurrent RNA-binding domain is appended to eukaryotic aminoacyl-tRNA synthetases. EMBO J 19:445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cérini C, Kerjan P, Astier M, Gratecos D, Mirande M, Semeriva M (1991) A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase. EMBO J 10:4267–4277

    PubMed  PubMed Central  Google Scholar 

  • Cho HY, Maeng SJ, Cho HJ, Choi YS, Chung JM, Lee S, Kim HK, Kim JH, Eom C-Y, Kim Y-G, Guo M, Jung HS, Kang BS, Kim S (2015) Assembly of multi-tRNA synthetase complex via heterotetrameric glutathione transferase-homology domains. J Biol Chem 290:29313–29328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cusack S (1995) Eleven down and nine to go. Nat Struct Biol 2:824–831

    Article  CAS  PubMed  Google Scholar 

  • David A, Netzer N, Strader MB, Das SR, Chen CY, Gibbs J, Pierre P, Bennink JR, Yewdell JW (2011) RNA binding targets aminoacyl-tRNA synthetases to translating ribosomes. J Biol Chem 286:20688–20700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias J, Renault L, Perez J, Mirande M (2013) Small-angle X-ray solution scattering study of the multi-aminoacyl-tRNA synthetase complex reveals an elongated and multi-armed particle. J Biol Chem 288:23979–23989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    Article  CAS  PubMed  Google Scholar 

  • Francin M, Mirande M (2003) Functional dissection of the eukaryotic-specific tRNA-interacting factor of lysyl-tRNA synthetase. J Biol Chem 278:1472–1479

    Article  CAS  PubMed  Google Scholar 

  • Francin M, Kaminska M, Kerjan P, Mirande M (2002) The N-terminal domain of mammalian lysyl-tRNA synthetase is a functional tRNA-binding domain. J Biol Chem 277:1762–1769

    Article  CAS  PubMed  Google Scholar 

  • Frechin M, Enkler L, Tetaud E, Laporte D, Senger B, Blancard C, Hammann P, Bader G, Clauder-Münster S, Steinmetz LM, Martin RP, di Rago J-P, Becker HD (2014) Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex. Mol Cell 56:763–776

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Kim Y, Jin KS, Kim HS, Kim JH, Wang D, Park M, Jo CH, Kwon NH, Kim D, Kim MH, Jeon YH, Hwang KY, Kim S, Cho Y (2014) Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation. Proc Natl Acad Sci U S A 111:15084–15089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigou L, Shalak V, Mirande M (2004) The tRNA-interacting factor p43 associates with mammalian arginyl-tRNA synthetase but does not modify its tRNA aminoacylation properties. Biochemistry 43:4592–4600

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Ignatov M, Musier-Forsyth K, Schimmel P, Yang XL (2008) Crystal structure of tetrameric form of human lysyl-tRNA synthetase: implications for multisynthetase complex formation. Proc Natl Acad Sci U S A 105:2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Schimmel P, Yang XL (2010) Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 584:434–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JM, Kim JY, Kim S (2003) Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun 303:985–993

    Article  CAS  PubMed  Google Scholar 

  • Havrylenko S, Mirande M (2015) Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 16:6571–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibba M, Söll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  CAS  PubMed  Google Scholar 

  • Jeong EJ, Hwang GS, Kim KH, Kim MJ, Kim S, Kim KS (2000) Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats. Biochemistry 39:15775–15782

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Arif A, Ray PS, Fox PL (2008) WHEP domains direct noncanonical function of glutamyl-prolyl tRNA synthetase in translational control of gene expression. Mol Cell 29:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DL, Yang DCH (1981) Stoichiometry and composition of an aminoacyl-tRNA synthetase complex from rat liver. Proc Natl Acad Sci U S A 78:4059–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminska M, Shalak V, Mirande M (2001) The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function. Biochemistry 40:14309–14316

    Article  CAS  PubMed  Google Scholar 

  • Kaminska M, Havrylenko S, Decottignies P, Gillet S, Marechal PL, Negrutskii B, Mirande M (2009a) Dissection of the structural organization of the aminoacyl-tRNA synthetase complex. J Biol Chem 284:6053–6060

    Article  CAS  PubMed  Google Scholar 

  • Kaminska M, Havrylenko S, Decottignies P, Le Marechal P, Negrutskii B, Mirande M (2009b) Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells. J Biol Chem 284:13746–13754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, Godman G, Familletti PC, Wang F, Pan YC, Stern D, Clauss M (1992) Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem 267:20239–20247

    CAS  PubMed  Google Scholar 

  • Kao J, Fan YG, Haehnel I, Brett J, Greenberg S, Clauss M, Kayton M, Houck K, Kisiel W, Seljelid R, Burnier J, Stern D (1994) A peptide derived from the amino terminus of endothelial-monocyte-activating polypeptide II modulates mononuclear and polymorphonuclear leukocyte functions, defines an apparently novel cellular interaction site, and induces an acute inflammatory response. J Biol Chem 269:9774–9782

    CAS  PubMed  Google Scholar 

  • Kerjan P, Triconnet M, Waller JP (1992) Mammalian prolyl-tRNA synthetase corresponds to the 150 kDa subunit of the high-Mr aminoacyl-tRNA synthetase complex. Biochimie 74:195–205

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S (2000) Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex. J Biol Chem 275:21768–21772

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Park MC, Choi SJ, Oh YS, Choi EC, Cho HJ, Kim MH, Kim SH, Kim DW, Kim S, Kang BS (2008) Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM. J Biol Chem 283:14032–14040

    Article  CAS  PubMed  Google Scholar 

  • Kim KR, Park SH, Kim HS, Rhee KH, Kim BG, Kim DG, Park MS, Kim HJ, Kim S, Han BW (2013) Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex. Proteins 81:1840–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Cha SY, Jo CH, Han A, Hwang KY (2014) The crystal structure of arginyl-tRNA synthetase from Homo sapiens. FEBS Lett 588:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Ko YG, Kang YS, Kim EK, Park SG, Kim S (2000) Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J Cell Biol 149:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriacou SV, Deutscher MP (2008) An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol Cell 29:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazard M, Mirande M (1993) Cloning and analysis of a cDNA encoding mammalian arginyl-tRNA synthetase, a component of the multisynthetase complex with a hydrophobic N-terminal extension. Gene 132:237–245

    Article  CAS  PubMed  Google Scholar 

  • Lee YN, Razin E (2005) Nonconventional involvement of LysRS in the molecular mechanism of USF2 transcriptional activity in FcepsilonRI-activated mast cells. Mol Cell Biol 25:8904–8912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirande M (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40:95–142

    Article  CAS  PubMed  Google Scholar 

  • Mirande M, Kellermann O, Waller JP (1982) Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit. J Biol Chem 257:11049–11055

    CAS  PubMed  Google Scholar 

  • Mirande M, Cirakoglu B, Waller JP (1983) Seven mammalian aminoacyl-tRNA synthetases associated within the same complex are functionally independent. Eur J Biochem 131:163–170

    Article  CAS  PubMed  Google Scholar 

  • Norcum MT (1989) Isolation and electron microscopic characterization of the high molecular mass aminoacyl-tRNA synthetase complex from murine erythroleukemia cells. J Biol Chem 264:15043–15051

    CAS  PubMed  Google Scholar 

  • Norcum MT (1999) Ultrastructure of the eukaryotic aminoacyl-tRNA synthetase complex derived from two dimensional averaging and classification of negatively stained electron microscopic images. FEBS Lett 447:217–222

    Article  CAS  PubMed  Google Scholar 

  • Norcum MT, Boisset N (2002) Three-dimensional architecture of the eukaryotic multisynthetase complex determined from negatively stained and cryoelectron micrographs. FEBS Lett 512:298–302

    Article  CAS  PubMed  Google Scholar 

  • Norcum MT, Dignam JD (1999) Immunoelectron microscopic localization of glutamyl−/prolyl-tRNA synthetase within the eukaryotic multisynthetase complex. J Biol Chem 274:12205–12208

    Article  CAS  PubMed  Google Scholar 

  • Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M (2013) Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 49:30–42

    Article  CAS  PubMed  Google Scholar 

  • Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH, Choi YH, Choi D, Lee KS, Kim S (2005) The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120:209–221

    Article  CAS  PubMed  Google Scholar 

  • Quevillon S, Mirande M (1996) The p18 component of the multisynthetase complex shares a protein motif with the β and γ subunits of eukaryotic elongation factor 1. FEBS Lett 395:63–67

    Article  CAS  PubMed  Google Scholar 

  • Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M (1999) Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. J Mol Biol 285:183–195

    Article  CAS  PubMed  Google Scholar 

  • Ray PS, Arif A, Fox PL (2007) Macromolecular complexes as depots for releasable regulatory proteins. Trends Biochem Sci 32:158–164

    Article  CAS  PubMed  Google Scholar 

  • Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL (2011) Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 28:437–447

    Article  CAS  PubMed  Google Scholar 

  • Rémion A, Khoder-Agha F, Cornu D, Argentini M, Redeker V, Mirande M (2016) Identification of protein interfaces within the multi-aminoacyl-tRNA synthetase complex: the case of lysyl-tRNA synthetase and the scaffold protein p38. FEBS Open Biol 6:696–706

    Google Scholar 

  • Renault L, Kerjan P, Pasqualato S, Menetrey J, Robinson JC, Kawaguchi S, Vassylyev DG, Yokoyama S, Mirande M, Cherfils J (2001) Structure of the EMAPII domain of human aminoacyl-tRNA synthetase complex reveals evolutionary dimer mimicry. EMBO J 20:570–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JC, Kerjan P, Mirande M (2000) Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly. J Mol Biol 304:983–994

    Article  CAS  PubMed  Google Scholar 

  • Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL (2004) Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119:195–208

    Article  CAS  PubMed  Google Scholar 

  • Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M (2001) The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 276:23769–23776

    Article  CAS  PubMed  Google Scholar 

  • Shalak V, Guigou L, Kaminska M, Wautier MP, Wautier JL, Mirande M (2007) Characterization of p43(ARF), a derivative of the p43 component of multiaminoacyl-tRNA synthetase complex released during apoptosis. J Biol Chem 282:10935–10943

    Article  CAS  PubMed  Google Scholar 

  • Simader H, Hothorn M, Kohler C, Basquin J, Simos G, Suck D (2006) Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes. Nucleic Acids Res 34:3968–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swairjo MA, Morales AJ, Wang CC, Ortiz AR, Schimmel P (2000) Crystal structure of Trbp111: a structure-specific tRNA-binding protein. EMBO J 19:6287–6298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Morales AJ, Schimmel P (2000) Functional redundancy in the nonspecific RNA binding domain of a class I tRNA synthetase. J Biol Chem 275:17180–17186

    Article  CAS  PubMed  Google Scholar 

  • Wolfe CL, Warrington JA, Treadwell L, Norcum MT (2005) A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins. J Biol Chem 280:38870–38878

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Ji QQ, Ruan LL, Ye Q, Wang ED (2014) The mRNA of human cytoplasmic arginyl-tRNA synthetase recruits prokaryotic ribosomes independently. J Biol Chem 289:20953–20959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yannay-Cohen N, Carmi-Levy I, Kay G, Yang CM, Han JM, Kemeny DM, Kim S, Nechushtan H, Razin E (2009) LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell 34:603–611

    Article  CAS  PubMed  Google Scholar 

  • Yaremchuk A, Cusack S, Tukalo M (2000) Crystal structure of a eukaryote/archaeon-like prolyl-tRNA synthetase and its complex with tRNAPro(CGG). EMBO J 19:4745–4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamecnik P (1983) Diadenosine 5',5″'-P1,P4-tetraphosphate (Ap4A): its role in cellular metabolism. Anal Biochem 134:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry BJ, Mochida GH, Hill RS, Weimer JM, Stein Q, Poduri A, Partlow JN, Ville D, Dulac O, Yu TW, Lam AT, Servattalab S, Rodriguez J, Boddaert N, Munnich A, Colleaux L, Zon LI, Soll D, Walsh CA, Nabbout R (2014) Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet 94:547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Sun L, Yang X, Schimmel P (2013) ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase. Nature 494:121–124

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mirande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mirande, M. (2017). The Aminoacyl-tRNA Synthetase Complex. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes. Subcellular Biochemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-46503-6_18

Download citation

Publish with us

Policies and ethics