Skip to main content

Medical and Biomedical Applications of Shock Waves: The State of the Art and the Near Future

  • Conference paper
  • First Online:
30th International Symposium on Shock Waves 1

Abstract

Biomedical applications of shock waves are continuously growing. The use of shock waves to break up urinary calculi without surgery, which is known as extracorporeal shock wave lithotripsy (SWL), has led to considerable research in physics, medicine, microbiology, and molecular biology. After the first SWL the number of successful treatments increased exponentially. SWL use was expanded to other types of stones, including gallbladder stones, pancreatic calculi, and salivary gland stones. Today, shock waves are also common in orthopedics, traumatology, cardiology, rehabilitation, aesthetic therapy, and veterinary medicine. Many of these treatments, which are referred to as extracorporeal shock wave therapy (ESWT), are attracting increasing attention. The purpose of this article is to give an overview of the biomedical applications of shock waves, including some current research topics, such as, human cell transfection, and genetic transformation of bacteria and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rassweiler, J.J., Knoll, T., Köhrmann, K.U., McAteer, J.A., Lingeman, J.E., Cleveland, R.O., Bailey, M.R., Chaussy, C.: Shock wave technology and application: an update. Eur. Urol. 59, 784–796 (2011)

    Article  Google Scholar 

  2. Loske, A.M.: Medical and Biomedical Applications of Shock Waves. Shock Wave and High Pressure Phenomena. Springer International Publishing AG, Cham, Switzerland (2017). ISBN 978-3-319-47568-4

    Google Scholar 

  3. Wang, C.J.: Extracorporeal shockwave therapy in musculoskeletal disorders. J. Orthop. Surg. Res. 7, 11–17 (2012)

    Article  Google Scholar 

  4. Lukes, P., Sunka, P., Hoffer, P., Stelmashuk, V., Pouckova, P., Zadinova, M., Zeman, J., Dibdiak, L., Kolarova, H., Tomankova, K., Binder, S., Benes, J.: Focused tandem shock waves in water and their potential application in cancer treatment. Shock Waves 24, 51–57 (2014)

    Article  Google Scholar 

  5. Fernández, F., Fernández, G., Loske, A.M.: Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study. J. Endourol. 23, 1247–1253 (2009)

    Article  Google Scholar 

  6. Alvarez, U.M., Ramírez, A., Fernández, F., Méndez, A., Loske, A.M.: The influence of single-pulse and tandem shock waves on bacteria. Shock Waves 17, 441–447 (2008)

    Article  Google Scholar 

  7. Loske, A.M., Campos-Guillén, J., Fernández, F., Castaño-Tostado, E.: Enhanced shock wave-assisted transformation of Escherichia coli. Ultrasound Med. Biol. 37, 502–510 (2011)

    Google Scholar 

  8. Loske, A.M., Fernández, F., Magaña-Ortíz, D., Coconi-Linares, N., Ortíz-Vázquez, E., Gómez-Lim, M.A.: Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics 54, 1656–1662 (2014)

    Article  Google Scholar 

  9. Kenmoku, T., Nobuyasu, O., Ohtori, S.: Degeneration and recovery of the neuromuscular junction after application of extracorporeal shock wave therapy. J. Orthop. Res. 30, 1660–1665 (2012)

    Article  Google Scholar 

  10. Qin, J., Simmons, W.N., Sankin, G., Zhong, P.: Effect of lithotripter focal width on stone comminution in shock wave lithotripsy. J. Acoust. Soc. Am. 127, 2635–2645 (2010)

    Article  Google Scholar 

  11. Brown, R.D., De, S., Sarkissian, C., Monga, M.: Best practices in shock wave lithotripsy: a comparison of regional practice patterns. Urology 83, 1060–1064 (2014)

    Article  Google Scholar 

  12. Portincasa, P., Di Ciaula, A., Bonfrate, L., Wang, D.Q.H.: Therapy of gallstone disease: what it was, what it is, what it will be. World J. Gastrointest. Pharmacol. Ther. 3, 7–20 (2012)

    Article  Google Scholar 

  13. Tandan, M., Reddy, D.N., Talukdar, R., Vinod, K., Santosh, D., Lakhtakia, S., Gupta, R., Ramchandani, M.J., Banerjee, R., Rakesh, K., Varadaraj, G., Rao, G.V.: Long-term clinical outcomes of extracorporeal shockwave lithotripsy in painful chronic calcific pancreatitis. Gastrointest. Endosc. 78, 726–733 (2013)

    Article  Google Scholar 

  14. Neisius, A., Smith, N.B., Sankin, G., Kuntz, N.J., Madden, J.F., Fovargue, D.E., Mitran, S., Lipkin, M.E., Simmons, W.N., Preminger, G.M., Zhong, P.: Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Proc. Natl. Acad. Sci. U. S. A. 111, E1167–E1175 (2014)

    Article  Google Scholar 

  15. Wang, Y., Guo, T., Ma, T.K., Cai, H.Y., Tao, S.M., Peng, Y.Z., Yang, P., Chen, M.Q., Gu, Y.: A modified regimen of extracorporeal cardiac shock wave therapy for treatment of coronary artery disease. Cardiovasc. Ultrasound 17, 10–35 (2012)

    Google Scholar 

  16. Wess, O.J.: A neural model for chronic pain and pain relief by extracorporeal shock wave treatment. Urol. Res. 36, 327–334 (2008)

    Article  Google Scholar 

  17. Mittermayr, R., Antonic, V., Hartinger, J., Kaufmann, H., Redl, H., Téot, L., Stojadinovic, A., Schaden, W.: Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen. 20, 456–465 (2012)

    Google Scholar 

  18. Delius, M., Hofschneider, P.H., Lauer, U., Messmer, K.: Extracorporeal shock waves for gene therapy? Lancet 345, 1377 (1995)

    Article  Google Scholar 

  19. Millán-Chiu, B., Camacho, G., Varela-Echavarría, A., Tamariz, E., Fernández, F., López-Marín, L.M., Loske, A.M.: Shock waves and DNA-cationic lipid assemblies: a synergistic approach to express exogenous genes in human cells. Ultrasound Med. Biol. 40, 1599–1608 (2014)

    Article  Google Scholar 

  20. Magaña-Ortíz, D., Coconi-Linares, N., Ortiz-Vazquez, E., Fernández, F., Loske, A.M., Gómez-Lim, M.A.: A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet. Biol. 56, 9–16 (2013)

    Article  Google Scholar 

  21. Rivera, A.L., Magaña-Ortíz, D., Gómez-Lim, M., Fernández, F., Loske, A.M.: Physical methods for genetic transformation of fungi and yeast. Phys. Life Rev. 11, 184–203 (2014)

    Article  Google Scholar 

  22. Jagadeesh, G., Nataraja, K.N., Udayakumar, M.: Shock waves can enhance bacterial transformation with plasmid DNA. Curr. Sci. India 87, 734–735 (2004)

    Google Scholar 

  23. Divya, P.G., Anish, R.V., Jagadeesh, G., Chakravortty, D.: Bacterial transformation using micro-shock waves. Anal. Biochem. 419, 292–301 (2011)

    Article  Google Scholar 

  24. Soto-Alonso, G., Cruz-Medina, J.A., Caballero-Pérez, J., Arvizu-Hernández, I., Ávalos, L.M., Cruz-Hernández, A., Romero-Gómez, S., Rodríguez, A.L., Pastrana-Martínez, X., Fernández, F., Loske, A.M., Campos-Guillén, J.: Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation. J. Microbiol. Methods 114, 1–8 (2015)

    Google Scholar 

  25. von Eiff, C., Overbeck, J., Haupts, G., Herrmann, M., Winckler, S., Richter, K.D., Peters, G., Spiegel, H.U.: Bactericidal effect of extracorporeal shock waves on Staphylococcus aureus. J. Med. Microbiol. 49, 709–712 (2000)

    Google Scholar 

  26. Alvarez, U.M., Loske, A.M., Castaño-Tostado, E., Prieto, F.E.: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes by underwater shock waves. Innovative Food Sci. Emerg. Technol. 5, 459–463 (2004)

    Google Scholar 

  27. Kerfoot, W.W., Beshai, A.Z., Carson, C.C.: The effect of isolated high-energy shock wave treatments on subsequent bacterial growth. Urol. Res. 20, 183–186 (1992)

    Article  Google Scholar 

  28. Quintero, M.S., Alvarez, U.M., Wacher, C., Gutiérrez, J., Castaño-Tostado, E., Fernández, F., Loske, A.M.: Interaction of shock waves with infected kidney stones: is there a bactericidal effect? J. Endourol. 22, 1629–1637 (2008)

    Article  Google Scholar 

  29. Abe, A., Mimura, H., Ishida, H., Yoshida, K.: The effect of shock pressures on the inactivation of a marine Vibrio sp. Shock Waves 17, 143–151 (2007)

    Google Scholar 

Download references

Acknowledgments

The author acknowledges L. M. López-Marín and F. Fernández for careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim M. Loske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Loske, A.M. (2017). Medical and Biomedical Applications of Shock Waves: The State of the Art and the Near Future. In: Ben-Dor, G., Sadot, O., Igra, O. (eds) 30th International Symposium on Shock Waves 1. Springer, Cham. https://doi.org/10.1007/978-3-319-46213-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46213-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46211-0

  • Online ISBN: 978-3-319-46213-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics