Skip to main content

Unsteadiness of Supersonic Flows in Over-Expanded Nozzles

  • Conference paper
  • First Online:
30th International Symposium on Shock Waves 1

Abstract

This paper presents numerical simulations of three-dimensional flow separation in a supersonic over-expanded nozzle with a Thrust-Optimized Contour (TOC). Computations are conducted for various nozzle pressure ratio (NPR) in order to investigate the effect of the pressure gradient on the shock structure and the associated flow unsteadiness. By analyzing the pressure signals downstream of the separation, it is found that the high-energy large-amplitude movement of the recirculation flow behind the Mach disk leads to shock unsteadiness and strong pressure fluctuations at the wall. The study highlights for the first time the importance of the flow unsteadiness downstream of the separation and the role played by the own dynamics of the recirculating zone and the associated vortex core on the overall nozzle flow instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Summerfield, M., Foster, C.R., Swan, W.C.: Flow separation in overexpanded supersonic exhaust nozzles. Jet propulsion, 24 (5), 319–321 (1954)

    Google Scholar 

  2. Frey, M., Hagemann, G.: Restricted shock separation in rocket nozzles. J. Propuls. Power 16 (3), 478–484 (2000)

    Article  Google Scholar 

  3. Chen, C.L., Chakravarthy, S.R., Hung, C.M.: Numerical investigation of separated nozzle flows. AIAA J. 32 (9), 1836–1843 (1994)

    Article  Google Scholar 

  4. Hadjadj, A., Onofri, M.: Nozzle flow separation. Shock Waves 19 (3), 163–169 (2009)

    Article  MATH  Google Scholar 

  5. Johnson, A.D., Papamoschou, D.: Instability of shock-induced nozzle flow separation. Phys. Fluids (1994-present) 22 (1), 016102 (2010)

    Google Scholar 

  6. Östlund, J.: Flow processes in rocket engine nozzles with focus on flow separation and side-loads (2002)

    Google Scholar 

  7. Nguyen, A.T., Deniau, H., Girard, S., De Roquefort, T.A.: Unsteadiness of flow separation and end-effects regime in a thrust-optimized contour rocket nozzle. Flow Turbul. Combust. 71 (1–4), 161–181 (2003)

    Article  MATH  Google Scholar 

  8. Frey, M., Hagemann, G.: Status of flow separation prediction in rocket nozzles. AIAA Paper No. 1998-3619 (1998)

    Google Scholar 

  9. Hadjadj, A., Perrot, Y., Verma, S.: Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles. Aerosp. Sci. Technol. 42, 158–168 (2015)

    Article  Google Scholar 

  10. Ben-Dor, G., Ivanov, M., Vasilev, EI., Elperin, T.: Hysteresis processes in the regular reflection ↔ mach reflection transition in steady flows. Prog. Aerosp. Sci. 38 (4), 347–387 (2002)

    Article  Google Scholar 

  11. Chpoun, A., Passerel, D., Li, H., Ben-Dor, G.: Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation. J. Fluid Mech. 301, 19–35 (1995)

    Google Scholar 

  12. Pilinski, C.: Etude numérique du décollement en tuyères supersoniques. Ph.D. thesis, INSA de Rouen (2002)

    Google Scholar 

  13. Afaque, S.: Contribution to the numerical simulation of turbulent shock-induced separated flows: application to supersonic over-expended nozzle flow. Ph.D. thesis, Ecole Nationale Supérieur de Mécanique et d’Aérothechnique (2010)

    Google Scholar 

  14. Deck, S.: Delayed detached eddy simulation of the end-effect regime and side-loads in an overexpanded nozzle flow. Shock Waves 19 (3), 239–249 (2009)

    Article  MATH  Google Scholar 

  15. Dolling, D.S., Or, C.T.: Unsteadiness of the shock wave structure in attached and separated compression ramp flows. Exp. Fluids 3 (1), 24–32 (1985)

    Article  Google Scholar 

  16. Beresh, S.J., Clemens, N.T., Dolling, D.S.: Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40 (12), 2412–2422 (2002)

    Article  Google Scholar 

  17. Dupont, P., Haddad, C., Debiève, J.F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)

    Article  MATH  Google Scholar 

  18. Schwane, R., Torngren, L., Wong, H.: Validation of unsteady turbulent flow predictions for over-expanded rocket nozzle. In: Computational Fluid Dynamics 2002, pp. 707–712. Springer, Berlin (2003)

    Google Scholar 

  19. Georges-Picot, A.: Développement de modèle physiques et numériques pour la simulation aux grandes échelles des écoulements dans les tuyères supersoniques. Ph.D. thesis, Institut National des Sciences Appliquées de Rouen (2014)

    Google Scholar 

  20. Mouronval, A.S., Hadjadj, A., Kudryavtsev, A.N., Vandromme, D.: Numerical investigation of transient nozzle flow. Shock Waves 12 (5), 403–411 (2003)

    Article  MATH  Google Scholar 

  21. Mouronval, A.S., Hadjadj, A.: Numerical study of the starting process in a supersonic nozzle. J. Propuls. Power 21 (2), 374–378 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The first author is supported financially by the DGA (Direction Générale de l’Armement) from the French Ministry of Defense in collaboration with the DSTL, UK. The authors wish to thank the European PRACE project which allocated computer core-hours as part of the 9th PRACE project call. The simulations have been achieved using the TGCC Curie Fat Node cluster of CEA in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Piquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Piquet, A., Georges-Picot, A., Hadjadj, A. (2017). Unsteadiness of Supersonic Flows in Over-Expanded Nozzles. In: Ben-Dor, G., Sadot, O., Igra, O. (eds) 30th International Symposium on Shock Waves 1. Springer, Cham. https://doi.org/10.1007/978-3-319-46213-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46213-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46211-0

  • Online ISBN: 978-3-319-46213-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics