Skip to main content

Abstract

Scientific discoveries and advances often negate or disprove what we previously thought or at least give us a better understanding of the topic under consideration. The emergence of the health benefits of nitrite and nitrate in the proper context negates or counters the more than 50 years of research implicating these two anions as toxic, unwanted food additives that potentially cause cancer. New research has revealed that dietary nitrate, primarily from green leafy vegetables, can be serially reduced to nitrite and to nitric oxide. This new paradigm is now recognized as a redundant system for endogenous nitric oxide-based signaling that perhaps can overcome or compensate for loss of nitric oxide synthase production of NO. Understanding how nitrate and nitrite can be metabolized to NO while preventing formation of low molecular weight N-nitrosamines will allow for safe and effective dietary and/or therapeutic strategies to restore endogenous NO-based signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vita JA, Keaney Jr JF. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002;106(6):640–2.

    Article  PubMed  Google Scholar 

  2. Vita JA, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81(2):491–7.

    Article  CAS  PubMed  Google Scholar 

  3. Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988;336(6197):385–8.

    Article  CAS  PubMed  Google Scholar 

  4. Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985;82(22):7738–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doherty DH, et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol. 1998;16(7):672–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dou Y, et al. Myoglobin as a model system for designing heme protein based blood substitutes. Biophys Chem. 2002;98(1–2):127–48.

    Article  CAS  PubMed  Google Scholar 

  7. Gladwin MT, et al. Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc Natl Acad Sci U S A. 2000;97(18):9943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shiva S, et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol. 2006;2(9):486–93.

    Article  CAS  PubMed  Google Scholar 

  9. Moncada S, Higgs A. The L-arginine nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    Google Scholar 

  10. Kleinbongard P, et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med. 2006;40(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  11. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  12. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  13. Crawford JH, et al. Transduction of NO-bioactivity by the red blood cell in sepsis: novel mechanisms of vasodilation during acute inflammatory disease. Blood. 2004;104(5):1375–82.

    Article  CAS  PubMed  Google Scholar 

  14. Jungersten L, et al. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol. 1997;82(3):760–4.

    CAS  PubMed  Google Scholar 

  15. Lundberg JO, et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol. 2009;5(12):865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benjamin N, et al. Stomach NO synthesis. Nature. 1994;368(6471):502.

    Article  CAS  PubMed  Google Scholar 

  17. Lundberg JO, et al. Intragastric nitric oxide production in humans: measurements in expelled air. Gut. 1994;35(11):1543–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lundberg JO, et al. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.

    Article  CAS  PubMed  Google Scholar 

  19. Spiegelhalder B, Eisenbrand G, Preussman R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol. 1976;14:545–8.

    Article  CAS  PubMed  Google Scholar 

  20. Govoni M, et al. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19(4):333–7.

    Article  CAS  PubMed  Google Scholar 

  21. Duncan C, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate [see comments]. Nat Med. 1995;1(6):546–51.

    Article  CAS  PubMed  Google Scholar 

  22. Björne HH, et al. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J Clin Invest. 2004;113(1):106–14.

    Article  PubMed Central  Google Scholar 

  23. Jansson EA, et al. Protection from nonsteroidal anti-inflammatory drug (NSAID)-induced gastric ulcers by dietary nitrate. Free Radic Biol Med. 2007;42(4):510–8.

    Article  CAS  PubMed  Google Scholar 

  24. Petersson J, et al. Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G718–24.

    Article  CAS  PubMed  Google Scholar 

  25. Miyoshi M, et al. Dietary nitrate inhibits stress-induced gastric mucosal injury in the rat. Free Radic Res. 2003;37(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  26. Björne HH, Weitzberg E, Lundberg JO. Intragastric generation of antimicrobial nitrogen oxides from saliva—physiological and therapeutic considerations. Free Radic Biol Med. 2006;41(9):1404–12.

    Google Scholar 

  27. Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004;37(3):395–400.

    Article  CAS  PubMed  Google Scholar 

  28. Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006;41(5):691–701.

    Article  CAS  PubMed  Google Scholar 

  29. van Faassen EE, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009;29(5):683–741.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lundberg JO, Weitzberg E. NO generation from nitrite and its role in vascular control. Arterioscler Thromb Vasc Biol. 2005;25(5):915–22.

    Article  CAS  PubMed  Google Scholar 

  31. Dykhuizen RS, et al. Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob Agents Chemother. 1996;40(6):1422–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Duncan C, et al. Protection against oral and gastrointestinal diseases: importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation. Comp Biochem Physiol A Physiol. 1997;118(4):939–48.

    Article  CAS  PubMed  Google Scholar 

  33. Weitzberg E, Lundberg JO. Nonenzymatic nitric oxide production in humans. Nitric Oxide. 1998;2(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Larauche M, et al. Protective effect of dietary nitrate on experimental gastritis in rats. Br J Nutr. 2003;89(6):777–86.

    Article  CAS  PubMed  Google Scholar 

  35. Larauche M, Bueno L, Fioramonti J. Effect of dietary nitric oxide on gastric mucosal mast cells in absence or presence of an experimental gastritis in rats. Life Sci. 2003;73(12):1505–16.

    Article  CAS  PubMed  Google Scholar 

  36. Sobko T, et al. Gastrointestinal nitric oxide generation in germ-free and conventional rats. Am J Physiol Gastrointest Liver Physiol. 2004;287(5):G993–7.

    Article  CAS  PubMed  Google Scholar 

  37. Bryan NS, Ivy JL. Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutr Res. 2015;35(8):643–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Loscalzo M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bryan, N.S., Loscalzo, J. (2017). Introduction. In: Bryan, N., Loscalzo, J. (eds) Nitrite and Nitrate in Human Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46189-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46189-2_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46187-8

  • Online ISBN: 978-3-319-46189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics