Skip to main content

GABAB Receptor Functions in the Mesolimbic Dopamine System

  • Chapter
  • First Online:
Book cover GABAB Receptor

Part of the book series: The Receptors ((REC,volume 29))

Abstract

GABAB receptors are expressed in neurons of the dopamine system where they bidirectionally modulate activity and release of glutamate, GABA, and dopamine itself. Dopamine has many functions including signaling of salient external stimuli and prediction errors that optimize decision-making, as well as motivation and initiation of movement. GABAB receptors thus exert a second-order modulation, with effects on locomotion, motivation, and reward learning. Moreover, recent findings indicate that neuronal activity may induce a plasticity of GABAB receptor signaling. In this chapter, we review the structural and functional features of GABAB receptor signaling in the dopaminergic system, from subcellular specialization to plasticity and fine-tuning of mesolimbic circuits. Beyond a physiological role GABAB receptors may also affect disease, such as addiction. GABAB receptors may therefore constitute an interesting target for pharmacological interventions to treat this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamantidis, A. R., Tsai, H.-C., Boutrel, B., Zhang, F., Stuber, G. D., Budygin, E. A., et al. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. The Journal of Neuroscience, 31, 10829–10835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addolorato, G., Leggio, L., Cardone, S., Ferrulli, A., & Gasbarrini, G. (2009). Role of the GABA(B) receptor system in alcoholism and stress: Focus on clinical studies and treatment perspectives. Alcohol (Fayetteville, NY), 43, 559–563.

    Article  CAS  Google Scholar 

  • Ameisen, O. (2005). Complete and prolonged suppression of symptoms and consequences of alcohol-dependence using high-dose baclofen: A self-case report of a physician. Alcohol and Alcoholism (Oxford, Oxfordshire), 40, 147–150.

    Article  CAS  Google Scholar 

  • Arora, D., Haluk, D. M., Kourrich, S., Pravetoni, M., Fernández-Alacid, L., Nicolau, J. C., et al. (2010). Altered neurotransmission in the mesolimbic reward system of Girk mice. Journal of Neurochemistry, 114, 1487–1497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora, D., Hearing, M., Haluk, D. M., Mirkovic, K., Fajardo-Serrano, A., Wessendorf, M. W., et al. (2011). Acute cocaine exposure weakens GABAB receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area. The Journal of Neuroscience, 31, 12251–12257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balana, B., Bahima, L., Bodhinathan, K., Taura, J. J., Taylor, N. M., Nettleton, M. Y., et al. (2013). Ras-association domain of sorting Nexin 27 is critical for regulating expression of GIRK potassium channels. PLoS One, 8, e59800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckstead, M. J., Grandy, D. K., Wickman, K., & Williams, J. T. (2004). Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron, 42, 939–946.

    Article  CAS  PubMed  Google Scholar 

  • Beier, K. T., Steinberg, E. E., DeLoach, K. E., Xie, S., Miyamichi, K., Schwarz, L., et al. (2015). Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell, 162, 622–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettler, B., Kaupmann, K., Mosbacher, J., & Gassmann, M. (2004). Molecular structure and physiological functions of GABA(B) receptors. Physiological Reviews, 84, 835–867.

    Article  CAS  PubMed  Google Scholar 

  • Björklund, A., & Lindvall, O. (1975). Dopamine in dendrites of substantia nigra neurons: Suggestions for a role in dendritic terminals. Brain Research, 83, 531–537.

    Article  PubMed  Google Scholar 

  • Bocklisch, C., Pascoli, V., Wong, J. C. Y., House, D. R. C., Yvon, C., De Roo, M., et al. (2013). Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science, 341, 1521–1525.

    Article  CAS  PubMed  Google Scholar 

  • Boyes, J., & Bolam, J. P. (2003). The subcellular localization of GABA(B) receptor subunits in the rat substantia nigra. The European Journal of Neuroscience, 18, 3279–3293.

    Article  PubMed  Google Scholar 

  • Brazhnik, E., Shah, F., & Tepper, J. M. (2008). GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. The Journal of Neuroscience, 28, 10386–10398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron, D. L., & Williams, J. T. (1993). Dopamine D1 receptors facilitate transmitter release. Nature, 366, 344–347.

    Article  CAS  PubMed  Google Scholar 

  • Cardozo, D. L., & Bean, B. P. (1995). Voltage-dependent calcium channels in rat midbrain dopamine neurons: Modulation by dopamine and GABAB receptors. Journal of Neurophysiology, 74, 1137–1148.

    CAS  PubMed  Google Scholar 

  • Castillo, P. E., Chiu, C. Q., & Carroll, R. C. (2011). Long-term plasticity at inhibitory synapses. Current Opinion in Neurobiology, 21, 328–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalifoux, J. R., & Carter, A. G. (2010). GABAB receptors modulate NMDA receptor calcium signals in dendritic spines. Neuron, 66, 101–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charara, A., Heilman, T. C., Levey, A. I., & Smith, Y. (2000). Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. Neuroscience, 95, 127–140.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. T., Moran, K. A., Avshalumov, M. V., & Rice, M. E. (2006). Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release. Journal of Neurochemistry, 96, 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. T., & Rice, M. E. (2002). Synaptic regulation of somatodendritic dopamine release by glutamate and GABA differs between substantia nigra and ventral tegmental area. Journal of Neurochemistry, 81, 158–169.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H. J., Qian, X., Ehlers, M., Jan, Y. N., & Jan, L. Y. (2009). Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 106, 629–634.

    Article  CAS  PubMed  Google Scholar 

  • Ciruela, F., Fernández-Dueñas, V., Sahlholm, K., Fernández-Alacid, L., Nicolau, J. C., Watanabe, M., et al. (2010). Evidence for oligomerization between GABA(B) receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. The European Journal of Neuroscience, 32(8), 1265–1277.

    Article  PubMed  Google Scholar 

  • Corrigall, W. A., Coen, K. M., Adamson, K. L., Chow, B. L., & Zhang, J. (2000). Response of nicotine self-administration in the rat to manipulations of mu-opioid and gamma-aminobutyric acid receptors in the ventral tegmental area. Psychopharmacology, 149, 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Couve, A., Thomas, P., Calver, A. R., Hirst, W. D., Pangalos, M. N., Walsh, F. S., et al. (2002). Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling. Nature Neuroscience, 5, 415–424.

    CAS  PubMed  Google Scholar 

  • Cruz, H. G., Ivanova, T., Lunn, M.-L., Stoffel, M., Slesinger, P. A., & Lüscher, C. (2004). Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nature Neuroscience, 7, 153–159.

    Article  CAS  PubMed  Google Scholar 

  • David, M., Richer, M., Mamarbachi, A. M., Villeneuve, L. R., Dupré, D. J., & Hebert, T. E. (2006). Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cellular Signalling, 18, 2172–2181.

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America, 85, 5274–5278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobi, A., Margolis, E. B., Wang, H.-L., Harvey, B. K., & Morales, M. (2010). Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. The Journal of Neuroscience, 30, 218–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doupnik, C. A., Jaén, C., & Zhang, Q. (2004) Measuring the modulatory effects of RGS proteins on GIRK channels (pp 131–154). Department of Physiology and Biophysics, University of South Florida College of Medicine. Tampa: Elsevier.

    Google Scholar 

  • Engberg, G., Kling-Petersen, T., & Nissbrandt, H. (1993). GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra. Synapse (New York, NY), 15, 229–238.

    Article  CAS  Google Scholar 

  • Erhardt, S., Mathé, J. M., Chergui, K., Engberg, G., & Svensson, T. H. (2002). GABA(B) receptor-mediated modulation of the firing pattern of ventral tegmental area dopamine neurons in vivo. Naunyn-Schmiedeberg’s Archives of Pharmacology, 365, 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Ford, C. P., Gantz, S. C., Phillips, P. E. M., & Williams, J. T. (2010). Control of extracellular dopamine at dendrite and axon terminals. The Journal of Neuroscience, 30, 6975–6983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, C. E., Aryal, P., Suen, K.-F., & Slesinger, P. A. (2007). Evidence for association of GABAB receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. The Journal of Physiology, 580, 51–65.

    Article  CAS  PubMed  Google Scholar 

  • Gallimberti, L., Canton, G., Gentile, N., Ferri, M., Cibin, M., Ferrara, S. D., et al. (1989). Gamma-hydroxybutyric acid for treatment of alcohol withdrawal syndrome. Lancet (London, England), 2, 787–789.

    Article  CAS  Google Scholar 

  • Geffen, L. B., Jessell, T. M., Cuello, A. C., & Iversen, L. L. (1976). Release of dopamine from dendrites in rat substantia nigra. Nature, 260, 258–260.

    Article  CAS  PubMed  Google Scholar 

  • Giorgetti, M., Hotsenpiller, G., Froestl, W., & Wolf, M. E. (2002). In vivo modulation of ventral tegmental area dopamine and glutamate efflux by local GABA(B) receptors is altered after repeated amphetamine treatment. Neuroscience, 109, 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Grace, A. A., & Bunney, B. S. (1984a). The control of firing pattern in nigral dopamine neurons: Burst firing. The Journal of Neuroscience, 4, 2877–2890.

    CAS  PubMed  Google Scholar 

  • Grace, A. A., & Bunney, B. S. (1984b). The control of firing pattern in nigral dopamine neurons: Single spike firing. The Journal of Neuroscience, 4, 2866–2876.

    CAS  PubMed  Google Scholar 

  • Grace, A. A., Floresco, S. B., Goto, Y., & Lodge, D. J. (2007). Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends in Neurosciences, 30, 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Guetg, N., Abdel Aziz, S., Holbro, N., Turecek, R., Rose, T., Seddik, R., et al. (2010). NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13924–13929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, N. C., Webb, C., & Greenfield, S. A. (1989). A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience, 31, 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Hearing, M., Kotecki, L., Marron Fernandez de Velasco, E., Fajardo-Serrano, A., Chung, H. J., Luján, R., et al. (2013). Repeated cocaine weakens GABAB-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron, 80, 159–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry, D. J., Greene, M. A., & White, F. J. (1989). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Repeated administration. The Journal of Pharmacology and Experimental Therapeutics, 251, 833–839.

    CAS  PubMed  Google Scholar 

  • Hnasko, T. S., Chuhma, N., Zhang, H., Goh, G. Y., Sulzer, D., Palmiter, R. D., et al. (2010). Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron, 65, 643–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman, A. F., & Gerhardt, G. A. (1999). Differences in pharmacological properties of dopamine release between the substantia nigra and striatum: An in vivo electrochemical study. The Journal of Pharmacology and Experimental Therapeutics, 289, 455–463.

    CAS  PubMed  Google Scholar 

  • Huang, C. S., Shi, S.-H., Ule, J., Ruggiu, M., Barker, L. A., Darnell, R. B., et al. (2005). Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell, 123, 105–118.

    Article  CAS  PubMed  Google Scholar 

  • Inanobe, A., Yoshimoto, Y., Horio, Y., Morishige, K. I., Hibino, H., Matsumoto, S., et al. (1999). Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. The Journal of Neuroscience, 19, 1006–1017.

    CAS  PubMed  Google Scholar 

  • Jaffe, E. H., Marty, A., Schulte, A., & Chow, R. H. (1998). Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. The Journal of Neuroscience, 18, 3548–3553.

    CAS  PubMed  Google Scholar 

  • Johnson, S. W., & North, R. A. (1992a). Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of Neuroscience, 12, 483–488.

    CAS  PubMed  Google Scholar 

  • Johnson, S. W., & North, R. A. (1992b). Two types of neurone in the rat ventral tegmental area and their synaptic inputs. The Journal of Physiology, 450, 455–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., et al. (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 396, 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Joubert, L., Hanson, B., Barthet, G., Sebben, M., Claeysen, S., Hong, W., et al. (2004). New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: Roles in receptor targeting. Journal of Cell Science, 117, 5367–5379.

    Article  CAS  PubMed  Google Scholar 

  • Kajii, Y., Muraoka, S., Hiraoka, S., Fujiyama, K., Umino, A., & Nishikawa, T. (2003). A developmentally regulated and psychostimulant-inducible novel rat gene mrt1 encoding PDZ-PX proteins isolated in the neocortex. Molecular Psychiatry, 8, 434–444.

    Article  CAS  PubMed  Google Scholar 

  • Kantamneni, S., Gonzàlez-Gonzàlez, I. M., Luo, J., Cimarosti, H., Jacobs, S. C., Jaafari, N., et al. (2014). Differential regulation of GABAB receptor trafficking by different modes of N-methyl-D-aspartate (NMDA) receptor signaling. The Journal of Biological Chemistry, 289, 6681–6694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., et al. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 396, 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Khaliq, Z. M., & Bean, B. P. (2010). Pacemaking in dopaminergic ventral tegmental area neurons: Depolarizing drive from background and voltage-dependent sodium conductances. The Journal of Neuroscience, 30, 7401–7413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y., Park, M. K., & Chung, S. (2008). Voltage-operated Ca2+ channels regulate dopamine release from somata of dopamine neurons in the substantia nigra pars compacta. Biochemical and Biophysical Research Communications, 373, 665–669.

    Article  CAS  PubMed  Google Scholar 

  • Klitenick, M. A., DeWitte, P., & Kalivas, P. W. (1992). Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: An in vivo microdialysis study. The Journal of Neuroscience, 12, 2623–2632.

    CAS  PubMed  Google Scholar 

  • Koyrakh, L., Luján, R., Colón, J., Karschin, C., Kurachi, Y., Karschin, A., et al. (2005). Molecular and cellular diversity of neuronal G-protein-gated potassium channels. The Journal of Neuroscience, 25, 11468–11478.

    Article  CAS  PubMed  Google Scholar 

  • Kullmann, D. M., Moreau, A. W., Bakiri, Y., & Nicholson, E. (2012). Plasticity of inhibition. Neuron, 75, 951–962.

    Article  CAS  PubMed  Google Scholar 

  • Labouèbe, G., Lomazzi, M., Cruz, H. G., Creton, C., Luján, R., Li, M., et al. (2007). RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nature Neuroscience, 10, 1559–1568.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, C. J., Boyes, J., Gerlach, O., Chen, L., Magill, P. J., & Bolam, J. P. (2005). GABA(B) receptors at glutamatergic synapses in the rat striatum. Neuroscience, 136, 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  • Lacey, M. G., Mercuri, N. B., & North, R. A. (1989). Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. The Journal of Neuroscience, 9, 1233–1241.

    CAS  PubMed  Google Scholar 

  • Lalive, A. L., Munoz, M. B., Bellone, C., Slesinger, P. A., Lüscher, C., & Tan, K. R. (2014). Firing modes of dopamine neurons drive bidirectional GIRK channel plasticity. The Journal of Neuroscience, 34, 5107–5114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauffer, B. E. L., Melero, C., Temkin, P., Lei, C., Hong, W., Kortemme, T., et al. (2010). SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. The Journal of Cell Biology, 190, 565–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecca, S., Pelosi, A., Tchenio, A., Moutkine, I., Luján, R., Hervé, D., et al. (2016). Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nature Medicine, 22, 254–261.

    Article  CAS  PubMed  Google Scholar 

  • Ling, W., Shoptaw, S., & Majewska, D. (1998). Baclofen as a cocaine anti-craving medication: A preliminary clinical study. Neuropsychopharmacology, 18, 403–404.

    Article  CAS  PubMed  Google Scholar 

  • Luján, R., Marron Fernandez de Velasco, E., Aguado, C., & Wickman, K. (2014). New insights into the therapeutic potential of Girk channels. Trends in Neurosciences, 37, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Lunn, M.-L., Nassirpour, R., Arrabit, C., Tan, J., McLeod, I., Arias, C. M., et al. (2007). A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nature Neuroscience, 10, 1249–1259.

    Article  CAS  PubMed  Google Scholar 

  • Lüscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C., & Nicoll, R. A. (1997). G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron, 19, 687–695.

    Article  PubMed  Google Scholar 

  • Lüscher, C., & Malenka, R. C. (2011). Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling. Neuron, 69, 650–663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüscher, C., & Slesinger, P. A. (2010). Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature Reviews Neuroscience, 11(5), 301–315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüscher, C., & Ungless, M. A. (2006). The mechanistic classification of addictive drugs. PLoS Medicine, 3, e437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzoni, O. J., & Williams, J. T. (1999). Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. The Journal of Neuroscience, 19, 6629–6636.

    CAS  PubMed  Google Scholar 

  • Martellotta, M. C., Cossu, G., Fattore, L., Gessa, G. L., & Fratta, W. (1998). Intravenous self-administration of gamma-hydroxybutyric acid in drug-naive mice. European Neuropsychopharmacology, 8, 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Metz, M., Gassmann, M., Fakler, B., Schaeren-Wiemers, N., & Bettler, B. (2011). Distribution of the auxiliary GABAB receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. The Journal of Comparative Neurology, 519, 1435–1454.

    Article  CAS  PubMed  Google Scholar 

  • Morrisett, R. A., Mott, D. D., Lewis, D. V., Swartzwelder, H. S., & Wilson, W. A. (1991). GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus. The Journal of Neuroscience, 11, 203–209.

    CAS  PubMed  Google Scholar 

  • Munoz, M. B., Padgett, C. L., Rifkin, R., Terunuma, M., Wickman, K., Contet, C., et al. (2016). A role for the GIRK3 subunit in methamphetamine-induced attenuation of GABAB receptor-activated GIRK currents in VTA dopamine neurons. The Journal of Neuroscience, 36, 3106–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz, M. B., & Slesinger, P. A. (2014). Sorting nexin 27 regulation of G protein-gated inwardly rectifying K+ channels attenuates in vivo cocaine response. Neuron, 82, 659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutneja, M., Berton, F., Suen, K.-F., Lüscher, C., & Slesinger, P. A. (2005). Endogenous RGS proteins enhance acute desensitization of GABA(B) receptor-activated GIRK currents in HEK-293T cells. Pflügers Archiv / European Journal of Physiology, 450, 61–73.

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard, S., Flatman, J. A., & Engberg, I. (1993). Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. The Journal of Physiology, 466, 727–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A., & Duman, R. S. (1990). Chronic cocaine treatment decreases levels of the G protein subunits Gi alpha and Go alpha in discrete regions of rat brain. Journal of Neurochemistry, 55, 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  • Neuhoff, H., Neu, A., Liss, B., & Roeper, J. (2002). I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. The Journal of Neuroscience, 22, 1290–1302.

    CAS  PubMed  Google Scholar 

  • Nicholson, K. L., & Balster, R. L. (2001). GHB: A new and novel drug of abuse. Drug and Alcohol Dependence, 63, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Olpe, H. R., Koella, W. P., Wolf, P., & Haas, H. L. (1977). The action of baclofen on neurons of the substantia nigra and of the ventral tegmental area. Brain Research, 134, 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Otmakhova, N. A., & Lisman, J. E. (2004). Contribution of Ih and GABAB to synaptically induced afterhyperpolarizations in CA1: A brake on the NMDA response. Journal of Neurophysiology, 92, 2027–2039.

    Article  CAS  PubMed  Google Scholar 

  • Padgett, C. L., Lalive, A. L., Tan, K. R., Terunuma, M., Munoz, M. B., Pangalos, M. N., et al. (2012). Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron, 73, 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, P. E., & Stamford, J. A. (2000). Differential recruitment of N-, P- and Q-type voltage-operated calcium channels in striatal dopamine release evoked by ‘regular’ and ‘burst’ firing. Brain Research, 884, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Pitman, K. A., Puil, E., & Borgland, S. L. (2014). GABA(B) modulation of dopamine release in the nucleus accumbens core. The European Journal of Neuroscience, 40, 3472–3480.

    Article  PubMed  Google Scholar 

  • Puopolo, M., Raviola, E., & Bean, B. P. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. The Journal of Neuroscience, 27, 645–656.

    Article  CAS  PubMed  Google Scholar 

  • Rice, M. E., Cragg, S. J., & Greenfield, S. A. (1997). Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. Journal of Neurophysiology, 77, 853–862.

    CAS  PubMed  Google Scholar 

  • Santiago, M., Machado, A., & Cano, J. (1993a). Regulation of the prefrontal cortical dopamine release by GABAA and GABAB receptor agonists and antagonists. Brain Research, 630, 28–31.

    Article  CAS  PubMed  Google Scholar 

  • Santiago, M., Machado, A., & Cano, J. (1993b). In vivo release of dopamine from rat striatum, substantia nigra and prefrontal cortex: Differential modulation by baclofen. British Journal of Pharmacology, 109, 814–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz, Y., Schmauss, C., & Sulzer, D. (2002). Altered dopamine release and uptake kinetics in mice lacking D2 receptors. The Journal of Neuroscience, 22, 8002–8009.

    CAS  PubMed  Google Scholar 

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.

    CAS  PubMed  Google Scholar 

  • Schwenk, J., Metz, M., Zolles, G., Turecek, R., Fritzius, T., Bildl, W., et al. (2010). Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature, 465, 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, J., Pérez-Garci, E., Schneider, A., Kollewe, A., Gauthier-Kemper, A., Fritzius, T., et al. (2016). Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nature Neuroscience, 19, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe, A. L., Varela, E., Bettinger, L., & Beckstead, M. J. (2015). Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons. The International Journal of Neuropsychopharmacology, 18.

    Google Scholar 

  • Shoaib, M., Swanner, L. S., Beyer, C. E., Goldberg, S. R., & Schindler, C. W. (1998). The GABAB agonist baclofen modifies cocaine self-administration in rats. Behavioural Pharmacology, 9, 195–206.

    CAS  PubMed  Google Scholar 

  • Sugita, S., Johnson, S. W., & North, R. A. (1992). Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons. Neuroscience Letters, 134, 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouèbe, G., et al. (2012). GABA neurons of the VTA drive conditioned place aversion. Neuron, 73, 1173–1183.

    Article  CAS  PubMed  Google Scholar 

  • Terrier, J., Ort, A., Yvon, C., Saj, A., Vuilleumier, P., & Lüscher, C. (2011). Bi-directional effect of increasing doses of baclofen on reinforcement learning. Frontiers in Behavioral Neuroscience, 5, 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terunuma, M., Vargas, K. J., Wilkins, M. E., Ramírez, O. A., Jaureguiberry-Bravo, M., Pangalos, M. N., et al. (2010). Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 13918–13923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch, N. X., Ding, J. B., & Sabatini, B. L. (2012). Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature, 490, 262–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., De Lecea, L., et al. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science (New York, NY), 324, 1080–1084.

    Article  CAS  Google Scholar 

  • Turecek, R., Schwenk, J., Fritzius, T., Ivankova, K., Zolles, G., Adelfinger, L., et al. (2014). Auxiliary GABAB receptor subunits uncouple G protein βγ subunits from effector channels to induce desensitization. Neuron, 82, 1032–1044.

    Article  CAS  PubMed  Google Scholar 

  • van Zessen, R., Phillips, J. L., Budygin, E. A., & Stuber, G. D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron, 73, 1184–1194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vigot, R., Barbieri, S., Bräuner-Osborne, H., Turecek, R., Shigemoto, R., Zhang, Y. P., et al. (2006). Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron, 50, 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H.-L., Qi, J., Zhang, S., Wang, H., & Morales, M. (2015). Rewarding effects of optical stimulation of ventral tegmental area glutamatergic neurons. The Journal of Neuroscience, 35, 15948–15954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A., & Uchida, N. (2012). Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858–873.

    Article  CAS  PubMed  Google Scholar 

  • Westerink, B. H., de Boer, P., Santiago, M., & De Vries, J. B. (1994). Do nerve terminals and cell bodies of nigrostriatal dopaminergic neurons of the rat contain similar receptors? Neuroscience Letters, 167, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Westerink, B. H., Santiago, M., & De Vries, J. B. (1992). The release of dopamine from nerve terminals and dendrites of nigrostriatal neurons induced by excitatory amino acids in the conscious rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 345, 523–529.

    Article  CAS  PubMed  Google Scholar 

  • White, F. J. (1996). Synaptic regulation of mesocorticolimbic dopamine neurons. Annual Review of Neuroscience, 19, 405–436.

    Article  CAS  PubMed  Google Scholar 

  • White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., et al. (1998). Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature, 396, 679–682.

    Article  CAS  PubMed  Google Scholar 

  • Wickman, K., Karschin, C., Karschin, A., Picciotto, M. R., & Clapham, D. E. (2000). Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. The Journal of Neuroscience, 20, 5608–5615.

    CAS  PubMed  Google Scholar 

  • Xi, Z.-X., Ramamoorthy, S., Shen, H., Lake, R., Samuvel, D. J., & Kalivas, P. W. (2003). GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. The Journal of Neuroscience, 23, 3498–3505.

    CAS  PubMed  Google Scholar 

  • Xi, Z. X., & Stein, E. A. (1998). Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors-an in vivo electrochemical study. Brain Research, 798, 156–165.

    Article  CAS  PubMed  Google Scholar 

  • Xi, Z. X., & Stein, E. A. (2000). Increased mesolimbic GABA concentration blocks heroin self-administration in the rat. The Journal of Pharmacology and Experimental Therapeutics, 294, 613–619.

    CAS  PubMed  Google Scholar 

  • Xia, Y., Driscoll, J. R., Wilbrecht, L., Margolis, E. B., Fields, H. L., & Hjelmstad, G. O. (2011). Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. The Journal of Neuroscience, 31, 7811–7816.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K., Tarazi, F. I., Campbell, A., & Baldessarini, R. J. (2000). GABA(B) receptors: Altered coupling to G-proteins in rats sensitized to amphetamine. Neuroscience, 101, 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., et al. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America, 106, 7281–7288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Tony Lien for comments on the manuscript. A.L.L. and C.L. are supported by grants from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arnaud L. Lalive or Christian Lüscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lalive, A.L., Lüscher, C. (2016). GABAB Receptor Functions in the Mesolimbic Dopamine System. In: Colombo, G. (eds) GABAB Receptor. The Receptors, vol 29. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46044-4_8

Download citation

Publish with us

Policies and ethics