Skip to main content

Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors

  • Chapter
  • First Online:
Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors

Part of the book series: Contemporary Endocrinology ((COE))

  • 1256 Accesses

Abstract

Neuroendocrine tumors (NETs) arise from the diffuse neuroendocrine system with approximately 55 % arising in the small bowel, 25 % in lung bronchioles, and 20 % in the pancreas. Less frequent sites include the appendix, cervix, ovaries, prostate, thyroid, breast, and rectum (Fig. 20.1). Pheochromocytoma and paraganglioma will not be considered in this review as excellent evaluations of genetics and imaging in these rare tumors have been published recently [1, 2]. Neuroendocrine tumors are graded according to the mitotic index and/or Ki-67 expression. Grade I tumors demonstrate neuroendocrine differentiation with mitotic index and Ki-67 < 2 %; grade II tumors are also well differentiated with a mitotic index of 3–10 % and Ki-67 index of 2–20 %. Grade III NETs may be either well differentiated or poorly differentiated with mitotic index greater than 10 % and Ki-67 greater than 20 %. Poorly differentiated, grade III tumors are classified as neuroendocrine carcinoma (NEC) and can be either small-cell or large-cell malignancies. However, it is important to recognize that neuroendocrine tumors of any grade can metastasize, most often to the liver, lymph nodes, or bone. The incidence and prevalence of NETs in the USA have been tracked in the Surveillance, Epidemiology, and End Results (SEER) database of the National Institutes of Health since 1973. The most recent comprehensive analysis of SEER data with regard to neuroendocrine tumors was published in 2008 [3]; the estimated rate of new diagnoses was 5.2/100,000 person-years, with a prevalence of approximately 103,000. NETs are primarily a disease of older adults, but may also be diagnosed in childhood. According to the SEER database, the incidence of NETs in the 0–29-year age group is much lower at 0.3/100,000 with a prevalence in the USA of 7724 children and young adults referenced to 1 January 2004 [4]. A rapid increase in the worldwide incidence of NETs has been observed over the past decade as first pointed out for tumors of the lung, small bowel, and pancreas [5]. This increase was confirmed for all NETs in Norway, where the incidence increased from 13.3 to 21.3 per 100,000 person-years from 1993 to 2010 [6] and for gastroenteropancreatic (GEP) NETs in Italy [7]. Much of this increase in incidence is likely due to both the increased sensitivity of newer diagnostic techniques and to the recognition that even NETs formerly classified as “benign” can metastasize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bjorklund P, Pacak K, Crona J. Precision medicine in pheochromocytoma and paraganglioma: current and future concepts. J Intern Med. 2016.

    Google Scholar 

  2. Janssen I, Chen CC, Taïeb D, et al. 68Ga-DOTATATE PET/CT in the localization of head and neck paragangliomas compared with other functional imaging modalities and CT/MRI. J Nucl Med Off Pub, Soc Nucl Med. 2016;57:186–91.

    Google Scholar 

  3. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  4. Navalkele P, O’Dorisio MS, O'Dorisio TM, Zamba GK, Lynch CF. Incidence, survival, and prevalence of neuroendocrine tumors versus neuroblastoma in children and young adults: nine standard SEER registries, 1975–2006. Pediatr Blood Cancer. 2011;56:50–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.

    Article  CAS  PubMed  Google Scholar 

  6. Boyar Cetinkaya R, Aagnes B, Thiis-Evensen E, Tretli S, Bergestuen DS, Hansen S. Trends in Incidence of Neuroendocrine Neoplasms in Norway: A Report of 16,075 Cases from 1993 through 2010. Neuroendocrinology. 2015 Nov 13. [Epub ahead of print]

    Google Scholar 

  7. Merola E, Rinzivillo M, Cicchese N, Capurso G, Panzuto F, Delle Fave G. Digestive neuroendocrine neoplasms: a 2016 overview. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Stud Liver. 2016.

    Google Scholar 

  8. O’Dorisio TM, Anthony LB. A 25-year experience of gastroenteropancreatic neuroendocrine tumors and somatostatin (congeners) analogs: from symptom control to antineoplastic therapy. Front Horm Res. 2015;44:177–92.

    Article  PubMed  Google Scholar 

  9. Rinke A, Muller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–63.

    Article  CAS  PubMed  Google Scholar 

  10. Caplin ME, Pavel M, Cwikla JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371:224–33.

    Article  PubMed  Google Scholar 

  11. Brazeau P, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179:77–9.

    Article  CAS  PubMed  Google Scholar 

  12. Patel YC, Srikant CB. Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1–5). Endocrinology. 1994;135:2814–7.

    CAS  PubMed  Google Scholar 

  13. Reubi JC, Maurer R, von Werder K, Torhorst J, Klijn JG, Lamberts SW. Somatostatin receptors in human endocrine tumors. Cancer Res. 1987;47:551–8.

    CAS  PubMed  Google Scholar 

  14. Reubi JC, Schar JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  CAS  PubMed  Google Scholar 

  15. Bodei LF D, Grana CM, Cremonesi M, et al. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest. 2009;32:360–9.

    Article  Google Scholar 

  16. Kam BL, Teunissen JJ, Krenning EP, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S103–12.

    Article  PubMed  Google Scholar 

  17. Breeman W, De jong M, de blois E, Bernard B, de Jong M, Krenning E. Reduction of skeletal accumulation of radioactivity by co-injection of DTPA in [90Y-DOTA0, Tyr3]octreotide solutions containing free 90Y3+. Nucl Med Biol. 2004;31:821–4.

    Article  CAS  PubMed  Google Scholar 

  18. Krenning EP, Kooij PP, Bakker WH, Breeman WAP et al. Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide. A case history. Ann N Y Acad Sci 1994;733:496–506.

    Google Scholar 

  19. Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [in-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32:110–22.

    Article  PubMed  Google Scholar 

  20. Zaknun JJ, Bodei L, Mueller-Brand J, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Basu S, Ranade R, Thapa P. Metastatic neuroendocrine tumor with extensive bone marrow involvement at diagnosis: evaluation of response and hematological toxicity profile of PRRT with (177)Lu-DOTATATE. World J Nucl Med. 2016;15:38–43.

    PubMed  PubMed Central  Google Scholar 

  22. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:2416–23.

    Article  CAS  Google Scholar 

  23. Bushnell Jr DL, O’Dorisio TM, O’Dorisio MS, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1652–9.

    Article  CAS  Google Scholar 

  24. Valkema R, Pauwels S, Kvols LK, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2006;36:147–56.

    Article  PubMed  Google Scholar 

  25. Bodei L, Kwekkeboom DJ, Kidd M, Modlin IM, Krenning EP. Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer. Semin Nucl Med. 2016;46:225–38.

    Article  PubMed  Google Scholar 

  26. Menda Y, O’Dorisio MS, Kao S, et al. Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med Off Pub, Soc Nucl Med. 2010;51:1524–31.

    Google Scholar 

  27. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:2124–30.

    Article  CAS  Google Scholar 

  28. Sansovini M, Severi S, Ambrosetti A, et al. Treatment with the radiolabelled somatostatin analog Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology. 2013;97:347–54.

    Article  CAS  PubMed  Google Scholar 

  29. Ezziddin S, Khalaf F, Vanezi M, et al. Outcome of peptide receptor radionuclide therapy with 177Lu-octreotate in advanced grade 1/2 pancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2014;41:925–33.

    Article  CAS  PubMed  Google Scholar 

  30. Sabet A, Dautzenberg K, Haslerud T, et al. Specific efficacy of peptide receptor radionuclide therapy with (177)Lu-octreotate in advanced neuroendocrine tumours of the small intestine. Eur J Nucl Med Mol Imaging. 2015;42:1238–46.

    Article  CAS  PubMed  Google Scholar 

  31. Khan S, Krenning E, Van Essen M, Kam BL, Teunissen JJ, Kwekkeboom DJ. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Nucl Med. 2011;52:1361–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kong G, Hofman MS, Murray WK, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87–96.

    Article  CAS  PubMed  Google Scholar 

  33. Gains JE, Bomanji JB, Fersht NL, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med Off Pub, Soc Nucl Med. 2011;52:1041–7.

    Google Scholar 

  34. Strosberg J, Wolin E, Chasen B, et al. NETTER-1 phase III: Efficacy and safety results in patients with midgut neuroendocrine tumors treated with 177-Lu-DOTATATE. J Clin Oncol. (Meeting Abstracts). 2016;34:suppl 4005.

    Google Scholar 

  35. Strosberg J, Wolin E, Chasen B, et al. NETTER-1 phase III: Progression-free survival, radiographic response, and preliminary overall survival results in patients with midgut neuroendocrine tumors treated with 177-Lu-DOTATE. J Clin Oncol. (Meeting Abstracts). 2016;34:suppl 194.

    Google Scholar 

  36. Delpassand E, Samarghandi A, Zamanian S, et al. Peptide receptor radionuclide therapy with 177-Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors: The first US phase 2 experience. Pancreas. 2014;43:518–25.

    Article  CAS  PubMed  Google Scholar 

  37. de Keizer B, van Aken MO, Feelders RA, et al. Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0, Tyr3]octreotate. Eur J Nucl Med Mol Imaging. 2008;35:749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lips C, Lentjes E, Hoppener J. The spectrum of carcinoid tumours and carcinoid syndromes. Ann Clin Biochem. 2003;40.

    Google Scholar 

  39. de Jong M, Krenning E. New advances in peptide receptor radionuclide therapy. J Nucl Med Off Pub, Soc Nucl Med. 2002;43:617–20.

    Google Scholar 

  40. Vegt E, de Jong M, Wetzels JF, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med Off Pub, Soc Nucl Med. 2010;51:1049–58.

    CAS  Google Scholar 

  41. Helisch A, Forster GJ, Reber H, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1386–92.

    Article  CAS  PubMed  Google Scholar 

  42. Vegt E, Melis M, Eek A, et al. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur J Nucl Med Mol Imaging. 2011;38:623–32.

    Article  CAS  PubMed  Google Scholar 

  43. Otte A, Herrmann R, Heppeler A, et al. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med. 1999;26:1439–47.

    Article  CAS  PubMed  Google Scholar 

  44. Cybulla M, Weiner SM, Otte A. End-stage renal disease after treatment with 90Y-DOTATOC. Eur J Nucl Med. 2001;28:1552–4.

    Article  CAS  PubMed  Google Scholar 

  45. Moll S, Nickeleit V, Mueller-Brand J, Brunner FP, Maecke HR, Mihatsch MJ. A new cause of renal thrombotic microangiopathy: Yttrium 90-DOTATOC internal radiotherapy. Am J Kidney Dis. 2001;37:847–51.

    Article  CAS  PubMed  Google Scholar 

  46. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42:5–19.

    Article  CAS  PubMed  Google Scholar 

  47. Bodei L, Cremonesi M, Zoboli S, et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging. 2003;30:207–16.

    Article  CAS  PubMed  Google Scholar 

  48. Cassady J. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. 1995;31:1249–56.

    Article  CAS  PubMed  Google Scholar 

  49. Bernard B, Krenning E, Breeman W, Rolleman E, Bakker W. D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med Off Pub, Soc Nucl Med. 1997;38:1929–33.

    CAS  Google Scholar 

  50. Kwekkeboom DJ, Bakker WH, Kooij PP, et al. [177Lu-DOTA0, Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med. 2001;28:1319–25.

    Article  CAS  PubMed  Google Scholar 

  51. Hammond P, Wade A, Gwilliam M, et al. Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue. Br J Cancer. 1993;67:1437–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vegt E, Wetzels J, Russel F, et al. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med Off Pub, Soc Nucl Med. 2006;47:432–6.

    CAS  Google Scholar 

  53. Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging. 2011;38:1270–80.

    Article  CAS  PubMed  Google Scholar 

  54. Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with (1)(7)(7)Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35.

    Article  CAS  PubMed  Google Scholar 

  55. Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A, Mikolajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38:1788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Villard L, Romer A, Marincek N, et al. Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:1100–6.

    Article  CAS  Google Scholar 

  57. Claringbold PG, Brayshaw PA, Price RA, Turner JH. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011;38:302–11.

    Article  CAS  PubMed  Google Scholar 

  58. Claringbold PG, Price RA, Turner JH. Phase I-II study of radiopeptide 177Lu-octreotate in combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumors. Cancer Biother Radiopharm. 2012;27:561–9.

    Article  CAS  PubMed  Google Scholar 

  59. Claringbold PG, Turner JH. Pancreatic neuroendocrine tumor control: durable objective response to combination Lu-octreotate-capecitabine-temozolomide radiopeptide chemotherapy. Neuroendocrinology. 2015.

    Google Scholar 

  60. Kesavan M, Claringbold PG, Turner JH. Hematological toxicity of combined 177Lu-octreotate radiopeptide chemotherapy of gastroenteropancreatic neuroendocrine tumors in long-term follow-up. Neuroendocrinology. 2014;99:108–17.

    Article  CAS  PubMed  Google Scholar 

  61. Fine RL, Gulati AP, Krantz BA, et al. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: The Pancreas Center at Columbia University experience. Cancer Chemother Pharmacol. 2013;71:663–70.

    Article  CAS  PubMed  Google Scholar 

  62. Strosberg JR, Fine RL, Choi J, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011;117:268–75.

    Article  CAS  PubMed  Google Scholar 

  63. Kratochwil C, Giesel FL, Lopez-Benitez R, et al. Intraindividual comparison of selective arterial versus venous 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors. Clin Cancer Res. 2010;16:2899–905.

    Article  CAS  PubMed  Google Scholar 

  64. Brogsitter C, Faulhaber D, Kotzerke J. Intraarterial treatment of GEP NET: (68)Ga-DOTATOC SUV cannot predict (90)Y-DOTATOC uptake. Clin Cancer Res. 2011;17:2065.

    Article  PubMed  Google Scholar 

  65. Kratochwil C, Lopez-Benitez R, Mier W, et al. Hepatic arterial infusion enhances DOTATOC radiopeptide therapy in patients with neuroendocrine liver metastases. Endocr Relat Cancer. 2011;18:595–602.

    Article  CAS  PubMed  Google Scholar 

  66. McStay MK, Maudgil D, Williams M, et al. Large-volume liver metastases from neuroendocrine tumors: hepatic intraarterial 90Y-DOTA-lanreotide as effective palliative therapy. Radiology. 2005;237:718–26.

    Article  PubMed  Google Scholar 

  67. Barone R, Borson-Chazot F, Valkema R, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med: official publication, Society of Nuclear Medicine 2005;46 Suppl 1:99s–106s.

    Google Scholar 

  68. Chalkia MT, Stefanoyiannis AP, Chatziioannou SN, Round WH, Efstathopoulos EP, Nikiforidis GC. Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review. Australas Phys Eng Sci Med. 2015;38:7–22.

    Article  CAS  PubMed  Google Scholar 

  69. Pauwels S, Barone R, Walrand S, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med Off Pub, Soc Nucl Med. 2005;46 Suppl 1:92S–8.

    CAS  Google Scholar 

  70. Cescato R, Waser B, Fani M, Reubi JC. Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro. J Nucl Med Off Pub, Soc Nucl Med. 2011;52:1886–90.

    CAS  Google Scholar 

  71. Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A. 2006;103:16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wild D, Fani M, Fischer R, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med Off Pub, Soc Nucl Med. 2014;55:1248–52.

    CAS  Google Scholar 

  73. Nayak TK, Norenberg JP, Anderson TL, Prossnitz ER, Stabin MG, Atcher RW. Somatostatin-receptor-targeted alpha-emitting 213Bi is therapeutically more effective than beta(−)-emitting 177Lu in human pancreatic adenocarcinoma cells. Nucl Med Biol. 2007;34:185–93.

    Article  CAS  PubMed  Google Scholar 

  74. Kratochwil C, Giesel FL, Bruchertseifer F, et al. (2)(1)(3)Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014;41:2106–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Menda MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pollard, J., O’Dorisio, M.S., O’Dorisio, T., Menda, Y. (2017). Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors. In: Pacak, K., Taïeb, D. (eds) Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46038-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46038-3_20

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46036-9

  • Online ISBN: 978-3-319-46038-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics