Skip to main content

Cortisol Metabolism as a Regulator of the Tissue-Specific Glucocorticoid Action

  • Chapter
  • First Online:
The Hypothalamic-Pituitary-Adrenal Axis in Health and Disease

Abstract

Glucocorticoids have a diverse array of functions affecting almost all tissues in the body. While circulating cortisol levels are under the control of the hypothalamo–pituitary–adrenal axis, within individual organs and tissues, a series of enzymes is able to metabolize, either inactivating or reactivating glucocorticoids to control their availability to bind and activate the glucocorticoid receptor. The most studied of these enzymes are the 11β-hydroxysteroid dehydrogenases (type 1 and type 2) and the A-ring reductases (5α-reductase type 1 and 2 and 5β-reductase). 11β-Hydroxysteroid dehydrogenase type 1 regenerates active glucocorticoid (cortisol) from inactive cortisone and thus amplifies local glucocorticoid action. In contrast, 11β-hydroxysteroid dehydrogenase type 2 and the A-ring reductases clear and inactivate glucocorticoids. All have tissue-specific patterns of expression and regulation and have been implicated in the pathogenesis of many diseases that are discussed as part of this chapter. In addition, 11β-hydroxysteroid dehydrogenases type 1 represents a novel therapeutic target and selective inhibitors that decease tissue-specific glucocorticoid levels have reached phase II clinical trials. The prereceptor regulation of glucocorticoid action is therefore not only of fundamental physiological and pathological importance, but continues to represent an area of intense scientific and therapeutic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munck A, Naray-Fejes-Toth A. The ups and downs of glucocorticoid physiology. Permissive and suppressive effects revisited. Mol Cell Endocrinol. 1992;90(1):C1–4.

    Article  CAS  PubMed  Google Scholar 

  2. Esteban NV, Loughlin T, Yergey AL, Zawadzki JK, Booth JD, Winterer JC, et al. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry. J Clin Endocrinol Metab. 1991;72(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  3. Siiteri PK, Murai JT, Hammond GL, Nisker JA, Raymoure WJ, Kuhn RW. The serum transport of steroid hormones. Recent Prog Horm Res. 1982;38:457–510.

    CAS  PubMed  Google Scholar 

  4. Keenan DM, Roelfsema F, Veldhuis JD. Endogenous ACTH concentration-dependent drive of pulsatile cortisol secretion in the human. Am J Physiol Endocrinol Metab. 2004;287(4):E652–61.

    Article  CAS  PubMed  Google Scholar 

  5. Dorin RI, Qiao Z, Qualls CR, Urban 3rd FK. Estimation of maximal cortisol secretion rate in healthy humans. J Clin Endocrinol Metab. 2012;97(4):1285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toothaker RD, Welling PG. Effect of dose size on the pharmacokinetics of intravenous hydrocortisone during endogenous hydrocortisone suppression. J Pharmacokinet Biopharm. 1982;10(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  7. Kendall EC, Charles S’s S. Cortisone. 1971.

    Google Scholar 

  8. Hench PS, Kendall EC, et al. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proc Staff Meet Mayo Clin. 1949;24(8):181–97.

    CAS  PubMed  Google Scholar 

  9. Burton RB, Keutmann EH, Waterhouse C, Schuler EA. The conversion of cortisone acetate to other alphaketolic steroids. J Clin Endocrinol Metab. 1953;13(1):48–63.

    Article  CAS  PubMed  Google Scholar 

  10. Amelung D, Hubener HJ, Rocka L, Meyerheim G. Conversion of cortisone to compound F. J Clin Endocrinol Metabol. 1953;13:1125.

    Article  CAS  Google Scholar 

  11. Kavanagh KL, Jornvall H, Persson B, Oppermann U. Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci. 2008;65(24):3895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Agarwal AK, Monder C, Eckstein B, White PC. Cloning and expression of rat cDNA encoding corticosteroid 11 beta-dehydrogenase. J Biol Chem. 1989;264(32):18939–43.

    CAS  PubMed  Google Scholar 

  13. Lakshmi V, Monder C. Purification and characterization of the corticosteroid 11 beta-dehydrogenase component of the rat liver 11 beta-hydroxysteroid dehydrogenase complex. Endocrinology. 1988;123(5):2390–8.

    Article  CAS  PubMed  Google Scholar 

  14. Tannin GM, Agarwal AK, Monder C, New MI, White PC. The human gene for 11β-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J Biol Chem. 1991;266:16653–8.

    CAS  PubMed  Google Scholar 

  15. Nobel CS, Dunas F, Abrahmsen LB. Purification of full-length recombinant human and rat type 1 11beta-hydroxysteroid dehydrogenases with retained oxidoreductase activities. Protein Expr Purif. 2002;26(3):349–56.

    Article  CAS  PubMed  Google Scholar 

  16. Maser E, Volker B, Friebertshauser J. 11 Beta-hydroxysteroid dehydrogenase type 1 from human liver: dimerization and enzyme cooperativity support its postulated role as glucocorticoid reductase. Biochemistry. 2002;41(7):2459–65.

    Article  CAS  PubMed  Google Scholar 

  17. Odermatt A, Arnold P, Stauffer A, Frey BM, Frey FJ. The N-terminal anchor sequences of 11beta-hydroxysteroid dehydrogenases determine their orientation in the endoplasmic reticulum membrane. J Biol Chem. 1999;274(40):28762–70.

    Article  CAS  PubMed  Google Scholar 

  18. Bujalska IJ, Draper N, Michailidou Z, Tomlinson JW, White PC, Chapman KE, et al. Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11 beta-hydroxysteroid dehydrogenase type 1. J Mol Endocrinol. 2005;34(3):675–84.

    Article  CAS  PubMed  Google Scholar 

  19. Draper N, Walker EA, Bujalska IJ, Tomlinson JW, Chalder SM, Arlt W, et al. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet. 2003;34(4):434–9.

    Article  CAS  PubMed  Google Scholar 

  20. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25(5):831–66.

    Article  CAS  PubMed  Google Scholar 

  21. Rogers SL, Hughes BA, Jones CA, Freedman L, Smart K, Taylor N, et al. Diminished 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased weight and weight gain across the first year of life. J Clin Endocrinol Metab. 2014;99(5):E821–31.

    Article  CAS  PubMed  Google Scholar 

  22. Murphy VE, Clifton VL. Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta. 2003;24(7):739–44.

    Article  CAS  PubMed  Google Scholar 

  23. Jinno K, Sakura N, Nomura S, Fujitaka M, Ueda K, Kihara M. Failure of cortisone acetate therapy in 21-hydroxylase deficiency in early infancy. Pediatr Int. 2001;43(5):478–82.

    Article  CAS  PubMed  Google Scholar 

  24. Abramovitz M, Branchaud CL, Murphy BE. Cortisol-cortisone interconversion in human fetal lung: contrasting results using explant and monolayer cultures suggest that 11 beta-hydroxysteroid dehydrogenase (EC 1.1.1.146) comprises two enzymes. J Clin Endocrinol Metab. 1982;54(3):563–8.

    Article  CAS  PubMed  Google Scholar 

  25. Dimitriou T, Maser-Gluth C, Remer T. Adrenocortical activity in healthy children is associated with fat mass. Am J Clin Nutr. 2003;77(3):731–6.

    CAS  PubMed  Google Scholar 

  26. Toogood AA, Taylor NF, Shalet SM, Monson JP. Sexual dimorphism of cortisol metabolism is maintained in elderly subjects and is not oestrogen dependent. Clin Endocrinol (Oxf). 2000;52(1):61–6.

    Article  CAS  Google Scholar 

  27. Vierhapper H, Heinze G, Nowotny P. Sex-specific difference in the interconversion of cortisol and cortisone in men and women. Obesity. 2007;15(4):820–4.

    Article  CAS  PubMed  Google Scholar 

  28. Finken MJ, Andrews RC, Andrew R, Walker BR. Cortisol metabolism in healthy young adults: sexual dimorphism in activities of A-ring reductases, but not 11beta-hydroxysteroid dehydrogenases. J Clin Endocrinol Metab. 1999;84(9):3316–21.

    CAS  PubMed  Google Scholar 

  29. Nixon M, Wake DJ, Livingstone DE, Stimson RH, Esteves CL, Seckl JR, et al. Salicylate downregulates 11beta-HSD1 expression in adipose tissue in obese mice and in humans, mediating insulin sensitization. Diabetes. 2012;61(4):790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gomez-Sanchez EP, Ganjam V, Chen YJ, Liu Y, Zhou MY, Toroslu C, et al. Regulation of 11 beta-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol. Am J Physiol Endocrinol Metab. 2003;285(2):E272–9.

    Article  CAS  PubMed  Google Scholar 

  31. Biason-Lauber A, Suter SL, Shackleton CH, Zachmann M. Apparent cortisone reductase deficiency: a rare cause of hyperandrogenemia and hypercortisolism. Horm Res. 2000;53(5):260–6.

    CAS  PubMed  Google Scholar 

  32. Lavery GG, Walker EA, Tiganescu A, Ride JP, Shackleton CH, Tomlinson JW, et al. Steroid Biomarkers and Genetic Studies Reveal Inactivating Mutations in Hexose-6-Phosphate Dehydrogenase in Patients with Cortisone Reductase Deficiency. J Clin Endocrinol Metab. 2008;93(10):3827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lawson AJ, Walker EA, Lavery GG, Bujalska IJ, Hughes B, Arlt W, et al. Cortisone-reductase deficiency associated with heterozygous mutations in 11beta-hydroxysteroid dehydrogenase type 1. Proc Natl Acad Sci U S A. 2011;108(10):4111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jamieson A, Wallace AM, Andrew R, Nunez BS, Walker BR, Fraser R, et al. Apparent cortisone reductase deficiency: a functional defect in 11beta-hydroxysteroid dehydrogenase type 1. J Clin Endocrinol Metab. 1999;84(10):3570–4.

    CAS  PubMed  Google Scholar 

  35. Nordenstrom A, Marcus C, Axelson M, Wedell A, Ritzen EM. Failure of cortisone acetate treatment in congenital adrenal hyperplasia because of defective 11beta-hydroxysteroid dehydrogenase reductase activity. J Clin Endocrinol Metab. 1999;84(4):1210–3.

    CAS  PubMed  Google Scholar 

  36. Brown RW, Chapman KE, Edwards CRW, Seckl JR. Human placental 11β-hydroxysteroid dehydrogenase: Evidence for and partial purification of a distinct NAD-dependent isoform. Endocrinology. 1993;132:2614–21.

    CAS  PubMed  Google Scholar 

  37. Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol. 1994;105(2):R11–7.

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal AK, Rogerson FM, Mune T, White PC. Gene structure and chromosomal localization of the human HSD11K gene encoding the kidney (type 2) isozyme of 11 beta-hydroxysteroid dehydrogenase. Genomics. 1995;29(1):195–9.

    Article  CAS  PubMed  Google Scholar 

  39. Brown RW, Chapman KE, Kotelevtsev Y, Yau JL, Lindsay RS, Brett L, et al. Cloning and production of antisera to human placental 11 beta-hydroxysteroid dehydrogenase type 2. Biochem J. 1996;313(Pt 3):1007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stewart PM, Murry BA, Mason JI. Human kidney 11 beta-hydroxysteroid dehydrogenase is a high affinity nicotinamide adenine dinucleotide-dependent enzyme and differs from the cloned type I isoform. J Clin Endocrinol Metab. 1994;79(2):480–4.

    CAS  PubMed  Google Scholar 

  41. Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirex LC, Rauh W, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab. 1979;49:757–64.

    Article  CAS  PubMed  Google Scholar 

  42. Dave-Sharma S, Wilson RC, Harbison MD, Newfield R, Azar MR, Krozowski ZS, et al. Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1998;83(7):2244–54.

    CAS  PubMed  Google Scholar 

  43. Wilson RC, Harbison MD, Krozowski ZS, Funder JW, Shackleton CHL, Hanauske-Abel HM, et al. Several homozygous mutations in the gene for 11β-hydroxysteroid dehydrogenase type 2 in patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1995;80:3145–50.

    CAS  PubMed  Google Scholar 

  44. Wilson RC, Krozowski ZS, Li K, Obeyesekere VR, Razzaghy-Azar M, Harbison MD, et al. A mutation in the HSD11B2 gene in a family with apparent mineralocorticoid excess. J Clin Endocrinol Metabol. 1995;80:2263–6.

    CAS  Google Scholar 

  45. Mune T, Rogerson FM, Nikkil H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11β-hydroxysteroid dehydrogenase. Nat Genet. 1995;10:394–9.

    Article  CAS  PubMed  Google Scholar 

  46. Stewart PM, Wallace AM, Valentino R, Burt D, Shackleton CHL, Edwards CRW. Mineralocorticoid activity of liquorice: 11β-hydroxysteroid dehydrogenase deficiency comes of age. Lancet. 1987;ii:821–4.

    Article  Google Scholar 

  47. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3(6):479–88.

    Article  CAS  PubMed  Google Scholar 

  48. Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest. 2004;114(8):1146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One. 2012;7(3), e33794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baserga M, Kaur R, Hale MA, Bares A, Yu X, Callaway CW, et al. Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11beta-hydroxysteroid dehydrogenase type 2 in a sex-specific manner. Am J Physiol Regul Integr Comp Physiol. 2010;299(1):R334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kostadinova RM, Nawrocki AR, Frey FJ, Frey BM. Tumor necrosis factor alpha and phorbol 12-myristate-13-acetate down-regulate human 11beta-hydroxysteroid dehydrogenase type 2 through p50/p50 NF-kappaB homodimers and Egr-1. FASEB J. 2005;19(6):650–2.

    CAS  PubMed  Google Scholar 

  52. Low SC, Assaad SN, Rajan V, Chapman KE, Edwards CR, Seckl JR. Regulation of 11 beta-hydroxysteroid dehydrogenase by sex steroids in vivo: further evidence for the existence of a second dehydrogenase in rat kidney. J Endocrinol. 1993;139(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  53. Rubis B, Krozowski Z, Trzeciak WH. Arginine vasopressin stimulates 11beta-hydroxysteroid dehydrogenase type 2 expression in the mineralocorticosteroid target cells. Mol Cell Endocrinol. 2006;256(1-2):17–22.

    Article  CAS  PubMed  Google Scholar 

  54. Clarke KA, Ward JW, Forhead AJ, Giussani DA, Fowden AL. Regulation of 11 beta-hydroxysteroid dehydrogenase type 2 activity in ovine placenta by fetal cortisol. J Endocrinol. 2002;172(3):527–34.

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki S, Koyama K, Darnel A, Ishibashi H, Kobayashi S, Kubo H, et al. Dexamethasone upregulates 11beta-hydroxysteroid dehydrogenase type 2 in BEAS-2B cells. Am J Respir Crit Care Med. 2003;167(9):1244–9.

    Article  PubMed  Google Scholar 

  56. Heiniger CD, Kostadinova RM, Rochat MK, Serra A, Ferrari P, Dick B, et al. Hypoxia causes down-regulation of 11 beta-hydroxysteroid dehydrogenase type 2 by induction of Egr-1. FASEB J. 2003;17(8):917–9.

    CAS  PubMed  Google Scholar 

  57. Fukushima K, Funayama Y, Yonezawa H, Takahashi K, Haneda S, Suzuki T, et al. Aldosterone enhances 11beta-hydroxysteroid dehydrogenase type 2 expression in colonic epithelial cells in vivo. Scand J Gastroenterol. 2005;40(7):850–7.

    Article  PubMed  Google Scholar 

  58. Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63:25–61.

    Article  CAS  PubMed  Google Scholar 

  59. Uemura M, Tamura K, Chung S, Honma S, Okuyama A, Nakamura Y, et al. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci. 2008;99(1):81–6.

    CAS  PubMed  Google Scholar 

  60. Andersson S, Russell DW. Structural and biochemical properties of cloned and expressed human and rat steroid 5 alpha-reductases. Proc Natl Acad Sci U S A. 1990;87(10):3640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Normington K, Russell DW. Tissue distribution and kinetic characteristics of rat steroid 5 alpha-reductase isozymes. Evidence for distinct physiological functions. J Biol Chem. 1992;267(27):19548–54.

    CAS  PubMed  Google Scholar 

  62. Schwartz JI, Tanaka WK, Wang DZ, Ebel DL, Geissler LA, Dallob A, et al. MK-386, an inhibitor of 5alpha-reductase type 1, reduces dihydrotestosterone concentrations in serum and sebum without affecting dihydrotestosterone concentrations in semen. J Clin Endocrinol Metab. 1997;82(5):1373–7.

    CAS  PubMed  Google Scholar 

  63. Labrie F, Sugimoto Y, Luu-The V, Simard J, Lachance Y, Bachvarov D, et al. Structure of human type II 5 alpha-reductase gene. Endocrinology. 1992;131(3):1571–3.

    CAS  PubMed  Google Scholar 

  64. Samtani R, Bajpai M, Ghosh PK, Saraswathy KN. SRD5A2 gene mutations—a population-based review. Pediatr Endocrinol Rev. 2010;8(1):34–40.

    PubMed  Google Scholar 

  65. Ellis JA, Stebbing M, Harrap SB. Genetic analysis of male pattern baldness and the 5alpha-reductase genes. J Invest Dermatol. 1998;110(6):849–53.

    Article  CAS  PubMed  Google Scholar 

  66. Jakimiuk AJ, Weitsman SR, Magoffin DA. 5alpha-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1999;84(7):2414–8.

    CAS  PubMed  Google Scholar 

  67. Labrie F, Dupont A, Simard J, Luu-The V, Belanger A. Intracrinology: the basis for the rational design of endocrine therapy at all stages of prostate cancer. Eur Urol. 1993;24 Suppl 2:94–105.

    PubMed  Google Scholar 

  68. Faucher F, Cantin L, Luu-The V, Labrie F, Breton R. The crystal structure of human Delta4-3-ketosteroid 5beta-reductase defines the functional role of the residues of the catalytic tetrad in the steroid double bond reduction mechanism. Biochemistry. 2008;47(32):8261–70.

    Article  CAS  PubMed  Google Scholar 

  69. Lemonde HA, Custard EJ, Bouquet J, Duran M, Overmars H, Scambler PJ, et al. Mutations in SRD5B1 (AKR1D1), the gene encoding delta(4)-3-oxosteroid 5beta-reductase, in hepatitis and liver failure in infancy. Gut. 2003;52(10):1494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Palermo M, Marazzi MG, Hughes BA, Stewart PM, Clayton PT, Shackleton CH. Human Delta4-3-oxosteroid 5beta-reductase (AKR1D1) deficiency and steroid metabolism. Steroids. 2008;73(4):417–23.

    Article  CAS  PubMed  Google Scholar 

  71. Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R, Kenyon CJ, et al. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology. 2000;141(2):560–3.

    CAS  PubMed  Google Scholar 

  72. Livingstone DE, Kenyon CJ, Walker BR. Mechanisms of dysregulation of 11beta-hydroxysteroid dehydrogenase type 1 in obese Zucker rats. J Endocrinol. 2000;167(3):533–9.

    Article  CAS  PubMed  Google Scholar 

  73. Prasad SS, Prashanth A, Kumar CP, Reddy SJ, Giridharan NV, Vajreswari A. A novel genetically-obese rat model with elevated 11 beta-hydroxysteroid dehydrogenase type 1 activity in subcutaneous adipose tissue. Lipids Health Dis. 2010;9:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nakano S, Inada Y, Masuzaki H, Tanaka T, Yasue S, Ishii T, et al. Bezafibrate regulates the expression and enzyme activity of 11beta-hydroxysteroid dehydrogenase type 1 in murine adipose tissue and 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 2007;292(4):E1213–22.

    Article  CAS  PubMed  Google Scholar 

  75. Drake AJ, Livingstone DE, Andrew R, Seckl JR, Morton NM, Walker BR. Reduced adipose glucocorticoid reactivation and increased hepatic glucocorticoid clearance as an early adaptation to high-fat feeding in Wistar rats. Endocrinology. 2005;146(2):913–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, et al. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci U S A. 1997;94(26):14924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, Fievet C, et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes. 2004;53(4):931–8.

    Article  CAS  PubMed  Google Scholar 

  78. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294(5549):2166–70.

    Article  CAS  PubMed  Google Scholar 

  79. Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest. 2003;112(1):83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kershaw EE, Morton NM, Dhillon H, Ramage L, Seckl JR, Flier JS. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes. 2005;54(4):1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum”? Lancet. 1997;349:1210–3.

    Article  CAS  PubMed  Google Scholar 

  82. Tomlinson JW, Moore J, Cooper MS, Bujalska I, Shahmanesh M, Burt C, et al. Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology. 2001;142(5):1982–9.

    CAS  PubMed  Google Scholar 

  83. Handoko K, Yang K, Strutt B, Khalil W, Killinger D. Insulin attenuates the stimulatory effects of tumor necrosis factor alpha on 11beta-hydroxysteroid dehydrogenase 1 in human adipose stromal cells. J Steroid Biochem Mol Biol. 2000;72(3-4):163–8.

    Article  CAS  PubMed  Google Scholar 

  84. Friedberg M, Zoumakis E, Hiroi N, Bader T, Chrousos GP, Hochberg Z. Modulation of 11 beta-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. J Clin Endocrinol Metab. 2003;88(1):385–93.

    Article  CAS  PubMed  Google Scholar 

  85. Veilleux A, Rheaume C, Daris M, Luu-The V, Tchernof A. Omental adipose tissue type 1 11 beta-hydroxysteroid dehydrogenase oxoreductase activity, body fat distribution, and metabolic alterations in women. J Clin Endocrinol Metab. 2009;94(9):3550–7.

    Article  CAS  PubMed  Google Scholar 

  86. Bujalska IJ, Kumar S, Hewison M, Stewart PM. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology. 1999;140(7):3188–96.

    CAS  PubMed  Google Scholar 

  87. Bujalska IJ, Gathercole LL, Tomlinson JW, Darimont C, Ermolieff J, Fanjul AN, et al. A novel selective 11beta-hydroxysteroid dehydrogenase type 1 inhibitor prevents human adipogenesis. J Endocrinol. 2008;197(2):297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS One. 2011;6(10), e26223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Engeli S, Bohnke J, Feldpausch M, Gorzelniak K, Heintze U, Janke J, et al. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res. 2004;12(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  90. Goedecke JH, Wake DJ, Levitt NS, Lambert EV, Collins MR, Morton NM, et al. Glucocorticoid metabolism within superficial subcutaneous rather than visceral adipose tissue is associated with features of the metabolic syndrome in South African women. Clin Endocrinol (Oxf). 2006;65(1):81–7.

    Article  CAS  Google Scholar 

  91. Lindsay RS, Wake DJ, Nair S, Bunt J, Livingstone DE, Permana PA, et al. Subcutaneous adipose 11beta-hydroxysteroid dehydrogenase type 1 activity and messenger ribonucleic Acid levels are associated with adiposity and insulinemia in Pima Indians and Caucasians. J Clin Endocrinol Metab. 2003;88(6):2738–44.

    Article  CAS  PubMed  Google Scholar 

  92. Kannisto K, Pietilainen KH, Ehrenborg E, Rissanen A, Kaprio J, Hamsten A, et al. Overexpression of 11beta-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J Clin Endocrinol Metab. 2004;89(9):4414–21.

    Article  CAS  PubMed  Google Scholar 

  93. Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi MC, Grino M. Expression of the mRNA Coding for 11beta-Hydroxysteroid Dehydrogenase Type 1 in Adipose Tissue from Obese Patients: An in Situ Hybridization Study. J Clin Endocrinol Metab. 2002;87(6):2701–5.

    CAS  PubMed  Google Scholar 

  94. Rask E, Olsson T, Soderberg S, Andrew R, Livingstone DE, Johnson O, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86(3):1418–21.

    Article  CAS  PubMed  Google Scholar 

  95. Rask E, Walker BR, Soderberg S, Livingstone DE, Eliasson M, Johnson O, et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87(7):3330–6.

    CAS  PubMed  Google Scholar 

  96. Sandeep TC, Andrew R, Homer NZ, Andrews RC, Smith K, Walker BR. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone. Diabetes. 2005;54(3):872–9.

    Article  CAS  PubMed  Google Scholar 

  97. Desbriere R, Vuaroqueaux V, Achard V, Boullu-Ciocca S, Labuhn M, Dutour A, et al. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity (Silver Spring). 2006;14(5):794–8.

    Article  CAS  Google Scholar 

  98. Michailidou Z, Jensen MD, Dumesic DA, Chapman KE, Seckl JR, Walker BR, et al. Omental 11beta-hydroxysteroid dehydrogenase 1 correlates with fat cell size independently of obesity. Obesity (Silver Spring). 2007;15(5):1155–63.

    Article  CAS  Google Scholar 

  99. Paulsen SK, Pedersen SB, Fisker S, Richelsen B. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization. Obesity (Silver Spring). 2007;15(8):1954–60.

    Article  CAS  Google Scholar 

  100. Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM. Expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J Clin Endocrinol Metab. 2002;87(12):5630–5.

    Article  CAS  PubMed  Google Scholar 

  101. Stimson RH, Andersson J, Andrew R, Redhead DN, Karpe F, Hayes PC, et al. Cortisol release from adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 in humans. Diabetes. 2009;58(1):46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hughes KA, Manolopoulos KN, Iqbal J, Cruden NL, Stimson RH, Reynolds RM, et al. Recycling between cortisol and cortisone in human splanchnic, subcutaneous adipose, and skeletal muscle tissues in vivo. Diabetes. 2012;61(6):1357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee MJ, Fried SK, Mundt SS, Wang Y, Sullivan S, Stefanni A, et al. Depot-specific regulation of the conversion of cortisone to cortisol in human adipose tissue. Obesity. 2008;16(6):1178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dube S, Norby BJ, Pattan V, Carter RE, Basu A, Basu R. 11beta-hydroxysteroid dehydrogenase types 1 and 2 activity in subcutaneous adipose tissue in humans: implications in obesity and diabetes. J Clin Endocrinol Metab. 2015;100(1):E70–6.

    Article  CAS  PubMed  Google Scholar 

  105. Upreti R, Hughes KA, Livingstone DE, Gray CD, Minns FC, Macfarlane DP, et al. 5alpha-reductase type 1 modulates insulin sensitivity in men. J Clin Endocrinol Metab. 2014;99(8):E1397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zyirek M, Flood C, Longcope C. 5 Alpha-reductase activity in rat adipose tissue. Proc Soc Exp Biol Med. 1987;186(2):134–8.

    Article  CAS  PubMed  Google Scholar 

  107. Perel E, Daniilescu D, Kindler S, Kharlip L, Killinger DW. The formation of 5 alpha-reduced androgens in stromal cells from human breast adipose tissue. J Clin Endocrinol Metab. 1986;62(2):314–8.

    Article  CAS  PubMed  Google Scholar 

  108. Liu Y, Nakagawa Y, Wang Y, Sakurai R, Tripathi PV, Lutfy K, et al. Increased glucocorticoid receptor and 11{beta}-hydroxysteroid dehydrogenase type 1 expression in hepatocytes may contribute to the phenotype of type 2 diabetes in db/db mice. Diabetes. 2005;54(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  109. Morton NM, Holmes MC, Fievet C, Staels B, Tailleux A, Mullins JJ, et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem. 2001;276(44):41293–300.

    Article  CAS  PubMed  Google Scholar 

  110. Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, Staels B, et al. Metabolic syndrome without obesity: Hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci U S A. 2004;101(18):7088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lavery GG, Zielinska AE, Gathercole LL, Hughes B, Semjonous N, Guest P, et al. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase Type 1. Endocrinology. 2012;153(7):3236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ricketts ML, Verhaeg JM, Bujalska I, Howie AJ, Rainey WE, Stewart PM. Immunohistochemical localization of type 1 11beta-hydroxysteroid dehydrogenase in human tissues. J Clin Endocrinol Metab. 1998;83(4):1325–35.

    CAS  PubMed  Google Scholar 

  113. Jamieson PM, Chapman KE, Edwards CR, Seckl JR. 11 beta-hydroxysteroid dehydrogenase is an exclusive 11 beta- reductase in primary cultures of rat hepatocytes: effect of physicochemical and hormonal manipulations. Endocrinology. 1995;136(11):4754–61.

    CAS  PubMed  Google Scholar 

  114. Torrecilla E, Fernandez-Vazquez G, Vicent D, Sanchez-Franco F, Barabash A, Cabrerizo L, et al. Liver upregulation of genes involved in cortisol production and action is associated with metabolic syndrome in morbidly obese patients. Obes Surg. 2012;22(3):478–86.

    Article  PubMed  Google Scholar 

  115. Candia R, Riquelme A, Baudrand R, Carvajal CA, Morales M, Solis N, et al. Overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in visceral adipose tissue and portal hypercortisolism in non-alcoholic fatty liver disease. Liver Int. 2012;32(3):392–9.

    CAS  PubMed  Google Scholar 

  116. Konopelska S, Kienitz T, Hughes B, Pirlich M, Bauditz J, Lochs H, et al. Hepatic 11beta-HSD1 mRNA expression in fatty liver and nonalcoholic steatohepatitis. Clin Endocrinol (Oxf). 2009;70(4):554–60.

    Article  CAS  Google Scholar 

  117. Ahmed A, Rabbitt E, Brady T, Brown C, Guest P, Bujalska IJ, et al. A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease. PLoS One. 2012;7(2), e29531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH. Cortisol metabolism in human obesity: impaired cortisone → cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab. 1999;84(3):1022–7.

    CAS  PubMed  Google Scholar 

  119. Stimson RH, Andrew R, McAvoy NC, Tripathi D, Hayes PC, Walker BR. Increased whole-body and sustained liver cortisol regeneration by 11beta-hydroxysteroid dehydrogenase type 1 in obese men with type 2 diabetes provides a target for enzyme inhibition. Diabetes. 2011;60(3):720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dowman JK, Hopkins LJ, Reynolds GM, Armstrong MJ, Nasiri M, Nikolaou N, et al. Loss of 5alpha-reductase type 1 accelerates the development of hepatic steatosis but protects against hepatocellular carcinoma in male mice. Endocrinology. 2013;154(12):4536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Livingstone DE, Barat P, Di Rollo EM, Rees GA, Weldin BA, Rog-Zielinska EA, et al. 5alpha-Reductase type 1 deficiency or inhibition predisposes to insulin resistance, hepatic steatosis and liver fibrosis in rodents. Diabetes. 2015;64(2):447–58.

    Article  CAS  PubMed  Google Scholar 

  122. Crowley RK, Hughes B, Gray J, McCarthy T, Hughes S, Shackleton CH, et al. Longitudinal changes in glucocorticoid metabolism are associated with later development of adverse metabolic phenotype. Eur J Endocrinol. 2014;171(4):433–42.

    Article  CAS  PubMed  Google Scholar 

  123. Tomlinson JW, Finney J, Gay C, Hughes BA, Hughes SV, Stewart PM. Impaired glucose tolerance and insulin resistance are associated with increased adipose 11β-hydroxysteroid dehydrogenase type 1 expression and elevated hepatic 5α-reductase activity. Diabetes. 2008;57(10):2652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tomlinson JW, Finney J, Hughes BA, Hughes SV, Stewart PM. Reduced glucocorticoid production rate, decreased 5α-reductase activity and adipose tissue insulin sensitization following weight loss. Diabetes. 2008;57(6):1536–43.

    Article  CAS  PubMed  Google Scholar 

  125. Tsilchorozidou T, Honour JW, Conway GS. Altered cortisol metabolism in polycystic ovary syndrome: insulin enhances 5alpha-reduction but not the elevated adrenal steroid production rates. J Clin Endocrinol Metab. 2003;88(12):5907–13.

    Article  CAS  PubMed  Google Scholar 

  126. Vassiliadi DA, Barber TM, Hughes BA, McCarthy MI, Wass JA, Franks S, et al. Increased 5{alpha}-Reductase Activity and Adrenocortical Drive in Women with Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2009;94(9):3558–66.

    Article  CAS  PubMed  Google Scholar 

  127. Westerbacka J, Yki-Jarvinen H, Vehkavaara S, Hakkinen AM, Andrew R, Wake DJ, et al. Body fat distribution and cortisol metabolism in healthy men: enhanced 5beta-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver. J Clin Endocrinol Metab. 2003;88(10):4924–31.

    Article  CAS  PubMed  Google Scholar 

  128. Swali A, Walker EA, Lavery GG, Tomlinson JW, Stewart PM. 11β-Hydroxysteroid dehydrogenase type 1 regulates insulin and glucagon secretion in pancreatic islets. Diabetologia. 2008;51(11):2003–11.

    Article  CAS  PubMed  Google Scholar 

  129. Ortsater H, Alberts P, Warpman U, Engblom LO, Abrahmsen L, Bergsten P. Regulation of 11beta-hydroxysteroid dehydrogenase type 1 and glucose-stimulated insulin secretion in pancreatic islets of Langerhans. Diabetes Metab Res Rev. 2005;21(4):359–66.

    Article  PubMed  CAS  Google Scholar 

  130. Hult M, Ortsater H, Schuster G, Graedler F, Beckers J, Adamski J, et al. Short-term glucocorticoid treatment increases insulin secretion in islets derived from lean mice through multiple pathways and mechanisms. Mol Cell Endocrinol. 2009;301(1-2):109–16.

    Article  CAS  PubMed  Google Scholar 

  131. Davani B, Khan A, Hult M, Martensson E, Okret S, Efendic S, et al. Type 1 11beta -hydroxysteroid dehydrogenase mediates glucocorticoid activation and insulin release in pancreatic islets. J Biol Chem. 2000;275(45):34841–4.

    Article  CAS  PubMed  Google Scholar 

  132. Duplomb L, Lee Y, Wang MY, Park BH, Takaishi K, Agarwal AK, et al. Increased expression and activity of 11beta-HSD-1 in diabetic islets and prevention with troglitazone. Biochem Biophys Res Commun. 2004;313(3):594–9.

    Article  CAS  PubMed  Google Scholar 

  133. Turban S, Liu X, Ramage L, Webster SP, Walker BR, Dunbar DR, et al. Optimal elevation of beta-cell 11beta-hydroxysteroid dehydrogenase type 1 is a compensatory mechanism that prevents high-fat diet-induced beta-cell failure. Diabetes. 2012;61(3):642–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schmid J, Ludwig B, Schally AV, Steffen A, Ziegler CG, Block NL, et al. Modulation of pancreatic islets-stress axis by hypothalamic releasing hormones and 11beta-hydroxysteroid dehydrogenase. Proc Natl Acad Sci U S A. 2011;108(33):13722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Iqbal MJ, Greenway B, Wilkinson ML, Johnson PJ, Williams R. Sex-steroid enzymes, aromatase and 5 alpha-reductase in the pancreas: a comparison of normal adult, foetal and malignant tissue. Clin Sci. 1983;65(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  136. Dimitriadis G, Leighton B, Parry-Billings M, Sasson S, Young M, Krause U, et al. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J. 1997;321(Pt 3):707–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, et al. 11β-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes. 2009;58(11):2506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang M, Lv XY, Li J, Xu ZG, Chen L. Alteration of 11beta-hydroxysteroid dehydrogenase type 1 in skeletal muscle in a rat model of type 2 diabetes. Mol Cell Biochem. 2009;324(1-2):147–55.

    Article  CAS  PubMed  Google Scholar 

  139. Morgan SA, Gathercole LL, Simonet C, Hassan-Smith ZK, Bujalska I, Guest P, et al. Regulation of lipid metabolism by glucocorticoids and 11beta-HSD1 in skeletal muscle. Endocrinology. 2013;154(7):2374–84.

    Article  CAS  PubMed  Google Scholar 

  140. Abdallah BM, Beck-Nielsen H, Gaster M. Increased expression of 11beta-hydroxysteroid dehydrogenase type 1 in type 2 diabetic myotubes. Eur J Clin Invest. 2005;35(10):627–34.

    Article  CAS  PubMed  Google Scholar 

  141. Kilgour AH, Gallagher IJ, MacLullich AM, Andrew R, Gray CD, Hyde P, et al. Increased skeletal muscle 11betaHSD1 mRNA is associated with lower muscle strength in ageing. PLoS One. 2013;8(12), e84057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Hassan-Smith ZK, Morgan SA, Sherlock M, Hughes B, Taylor AE, Lavery GG, et al. Gender-Specific Differences in Skeletal Muscle 11beta-HSD1 Expression Across Healthy Aging. J Clin Endocrinol Metab. 2015;100(7):2673–81.

    Article  CAS  PubMed  Google Scholar 

  143. Brem AS, Bina RB, King TC, Morris DJ. Localization of 2 11beta-OH steroid dehydrogenase isoforms in aortic endothelial cells. Hypertension. 1998;31(1 Pt 2):459–62.

    Article  CAS  PubMed  Google Scholar 

  144. Walker BR, Yau JL, Brett LP, Seckl JR, Monder C, Williams BC, et al. 11β-hydroxysteroid dehydrogenase in vascular smooth muscle and heart: implications for cardiovascular responses to glucocorticoids. Endocrinology. 1991;129:3305–12.

    Article  CAS  PubMed  Google Scholar 

  145. Hermanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, Koo GC, et al. 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med. 2005;202(4):517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nuotio-Antar AM, Hachey DL, Hasty AH. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab. 2007;293(6):E1517–28.

    Article  CAS  PubMed  Google Scholar 

  147. Michailidou Z, Turban S, Miller E, Zou X, Schrader J, Ratcliffe PJ, et al. Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11beta-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice. J Biol Chem. 2012;287(6):4188–97.

    Article  CAS  PubMed  Google Scholar 

  148. Small GR, Hadoke PW, Sharif I, Dover AR, Armour D, Kenyon CJ, et al. Preventing local regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 enhances angiogenesis. Proc Natl Acad Sci U S A. 2005;102(34):12165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hadoke PW, Christy C, Kotelevtsev YV, Williams BC, Kenyon CJ, Seckl JR, et al. Endothelial cell dysfunction in mice after transgenic knockout of type 2, but not type 1, 11beta-hydroxysteroid dehydrogenase. Circulation. 2001;104(23):2832–7.

    Article  CAS  PubMed  Google Scholar 

  150. Deuchar GA, McLean D, Hadoke PW, Brownstein DG, Webb DJ, Mullins JJ, et al. 11Beta-hydroxysteroid dehydrogenase type 2 deficiency accelerates atherogenesis and causes proinflammatory changes in the endothelium in apoe-/- mice. Endocrinology. 2011;152(1):236–46.

    Article  CAS  PubMed  Google Scholar 

  151. Atalar F, Gormez S, Caynak B, Akan G, Tanriverdi G, Bilgic-Gazioglu S, et al. The role of mediastinal adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 and glucocorticoid expression in the development of coronary atherosclerosis in obese patients with ischemic heart disease. Cardiovasc Diabetol. 2012;11:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Atalar F, Vural B, Ciftci C, Demirkan A, Akan G, Susleyici-Duman B, et al. 11Beta-hydroxysteroid dehydrogenase type 1 gene expression is increased in ascending aorta tissue of metabolic syndrome patients with coronary artery disease. Genet Mol Res. 2012;11(3):3122–32.

    Article  CAS  PubMed  Google Scholar 

  153. Campelo AE, Cutini PH, Massheimer VL. Cellular actions of testosterone in vascular cells: mechanism independent of aromatization to estradiol. Steroids. 2012;77(11):1033–40.

    Article  CAS  PubMed  Google Scholar 

  154. Wyrwoll CS, Holmes MC, Seckl JR. 11beta-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol. 2011;32(3):265–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rauz S, Walker EA, Shackleton CH, Hewison M, Murray PI, Stewart PM. Expression and putative role of 11 beta-hydroxysteroid dehydrogenase isozymes within the human eye. Invest Ophthalmol Vis Sci. 2001;42(9):2037–42.

    CAS  PubMed  Google Scholar 

  156. Rajan V, Edwards CR, Seckl JR. 11 beta-Hydroxysteroid dehydrogenase in cultured hippocampal cells reactivates inert 11-dehydrocorticosterone, potentiating neurotoxicity. J Neurosci. 1996;16(1):65–70.

    CAS  PubMed  Google Scholar 

  157. Gomez-Sanchez EP, Romero DG, de Rodriguez AF, Warden MP, Krozowski Z, Gomez-Sanchez CE. Hexose-6-phosphate dehydrogenase and 11beta-hydroxysteroid dehydrogenase-1 tissue distribution in the rat. Endocrinology. 2008;149(2):525–33.

    Article  CAS  PubMed  Google Scholar 

  158. Sooy K, Webster SP, Noble J, Binnie M, Walker BR, Seckl JR, et al. Partial deficiency or short-term inhibition of 11beta-hydroxysteroid dehydrogenase type 1 improves cognitive function in aging mice. J Neurosci. 2010;30(41):13867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sandeep TC, Yau JL, MacLullich AM, Noble J, Deary IJ, Walker BR, et al. 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc Natl Acad Sci U S A. 2004;101(17):6734–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yau JL, Noble J, Kenyon CJ, Hibberd C, Kotelevtsev Y, Mullins JJ, et al. Lack of tissue glucocorticoid reactivation in 11beta -hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments. Proc Natl Acad Sci U S A. 2001;98(8):4716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Marek GJ, Katz DA, Meier A, Greco N, Zhang W, Liu W, et al. Efficacy and safety evaluation of HSD-1 inhibitor ABT-384 in Alzheimer’s disease. Alzheimers Dement. 2014;10(5 Suppl):S364–73.

    Article  PubMed  Google Scholar 

  162. Rauz S, Cheung CM, Wood PJ, Coca-Prados M, Walker EA, Murray PI, et al. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 lowers intraocular pressure in patients with ocular hypertension. QJM. 2003;96(7):481–90.

    Article  CAS  PubMed  Google Scholar 

  163. Sinclair AJ, Walker EA, Burdon MA, van Beek AP, Kema IP, Hughes BA, et al. Cerebrospinal fluid corticosteroid levels and cortisol metabolism in patients with idiopathic intracranial hypertension: a link between 11beta-HSD1 and intracranial pressure regulation? J Clin Endocrinol Metab. 2010;95(12):5348–56.

    Article  CAS  PubMed  Google Scholar 

  164. Diaz R, Brown RW, Seckl JR. Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci. 1998;18(7):2570–80.

    CAS  PubMed  Google Scholar 

  165. Korbonits M, Bujalska I, Shimojo M, Nobes J, Jordan S, Grossman AB, et al. Expression of 11 beta-hydroxysteroid dehydrogenase isoenzymes in the human pituitary: induction of the type 2 enzyme in corticotropinomas and other pituitary tumors. J Clin Endocrinol Metab. 2001;86(6):2728–33.

    CAS  PubMed  Google Scholar 

  166. Brunton PJ, Donadio MV, Yao ST, Greenwood M, Seckl JR, Murphy D, et al. 5Alpha-reduced neurosteroids sex-dependently reverse central prenatal programming of neuroendocrine stress responses in rats. J Neurosci. 2015;35(2):666–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Schubring SR, Fleischer W, Lin JS, Haas HL, Sergeeva OA. The bile steroid chenodeoxycholate is a potent antagonist at NMDA and GABA(A) receptors. Neurosci Lett. 2012;506(2):322–6.

    Article  CAS  PubMed  Google Scholar 

  168. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.

    Article  CAS  PubMed  Google Scholar 

  169. Chapman KE, Coutinho AE, Gray M, Gilmour JS, Savill JS, Seckl JR. The role and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in the inflammatory response. Mol Cell Endocrinol. 2009;301(1-2):123–31.

    Article  CAS  PubMed  Google Scholar 

  170. Thieringer R, Le Grand CB, Carbin L, Cai TQ, Wong B, Wright SD, et al. 11 Beta-hydroxysteroid dehydrogenase type 1 is induced in human monocytes upon differentiation to macrophages. J Immunol. 2001;167(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  171. Freeman L, Hewison M, Hughes SV, Evans KN, Hardie D, Means TK, et al. Expression of 11beta-hydroxysteroid dehydrogenase type 1 permits regulation of glucocorticoid bioavailability by human dendritic cells. Blood. 2005;106(6):2042–9.

    Article  CAS  PubMed  Google Scholar 

  172. Zhang TY, Ding X, Daynes RA. The expression of 11 beta-hydroxysteroid dehydrogenase type I by lymphocytes provides a novel means for intracrine regulation of glucocorticoid activities. J Immunol. 2005;174(2):879–89.

    Article  CAS  PubMed  Google Scholar 

  173. Gilmour JS, Coutinho AE, Cailhier JF, Man TY, Clay M, Thomas G, et al. Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. J Immunol. 2006;176(12):7605–11.

    Article  CAS  PubMed  Google Scholar 

  174. Zhang TY, Daynes RA. Macrophages from 11beta-hydroxysteroid dehydrogenase type 1-deficient mice exhibit an increased sensitivity to lipopolysaccharide stimulation due to TGF-beta-mediated up-regulation of SHIP1 expression. J Immunol. 2007;179(9):6325–35.

    Article  CAS  PubMed  Google Scholar 

  175. Coutinho AE, Gray M, Brownstein DG, Salter DM, Sawatzky DA, Clay S, et al. 11beta-Hydroxysteroid dehydrogenase type 1, but not type 2, deficiency worsens acute inflammation and experimental arthritis in mice. Endocrinology. 2012;153(1):234–40.

    Article  CAS  PubMed  Google Scholar 

  176. Hardy R, Rabbitt EH, Filer A, Emery P, Hewison M, Stewart PM, et al. Local and systemic glucocorticoid metabolism in inflammatory arthritis. Ann Rheum Dis. 2008;67(9):1204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zbankova S, Bryndova J, Leden P, Kment M, Svec A, Pacha J. 11beta-hydroxysteroid dehydrogenase 1 and 2 expression in colon from patients with ulcerative colitis. J Gastroenterol Hepatol. 2007;22(7):1019–23.

    Article  CAS  PubMed  Google Scholar 

  178. Cooper MS, Kriel H, Sayers A, Fraser WD, Williams AM, Stewart PM, et al. Can 11beta-hydroxysteroid dehydrogenase activity predict the sensitivity of bone to therapeutic glucocorticoids in inflammatory bowel disease? Calcif Tissue Int. 2011;89(3):246–51.

    Article  CAS  PubMed  Google Scholar 

  179. Nanus DE, Filer AD, Hughes B, Fisher BA, Taylor PC, Stewart PM, et al. TNFalpha regulates cortisol metabolism in vivo in patients with inflammatory arthritis. Ann Rheum Dis. 2015;74(2):464–9.

    Article  CAS  PubMed  Google Scholar 

  180. Bland R, Worker CA, Noble BS, Eyre LJ, Bujalska IJ, Sheppard MC, et al. Characterization of 11beta-hydroxysteroid dehydrogenase activity and corticosteroid receptor expression in human osteosarcoma cell lines. J Endocrinol. 1999;161(3):455–64.

    Article  CAS  PubMed  Google Scholar 

  181. Eyre LJ, Rabbitt EH, Bland R, Hughes SV, Cooper MS, Sheppard MC, et al. Expression of 11 beta-hydroxysteroid dehydrogenase in rat osteoblastic cells: pre-receptor regulation of glucocorticoid responses in bone. J Cell Biochem. 2001;81(3):453–62.

    Article  CAS  PubMed  Google Scholar 

  182. Cooper MS, Walker EA, Bland R, Fraser WD, Hewison M, Stewart PM. Expression and functional consequences of 11beta-hydroxysteroid dehydrogenase activity in human bone. Bone. 2000;27(3):375–81.

    Article  CAS  PubMed  Google Scholar 

  183. Eijken M, Hewison M, Cooper MS, de Jong FH, Chiba H, Stewart PM, et al. 11beta-Hydroxysteroid dehydrogenase expression and glucocorticoid synthesis are directed by a molecular switch during osteoblast differentiation. Mol Endocrinol. 2005;19(3):621–31.

    Article  CAS  PubMed  Google Scholar 

  184. Cooper MS, Bujalska I, Rabbitt E, Walker EA, Bland R, Sheppard MC, et al. Modulation of 11beta-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J Bone Miner Res. 2001;16(6):1037–44.

    Article  CAS  PubMed  Google Scholar 

  185. Kaur K, Hardy R, Ahasan MM, Eijken M, van Leeuwen JP, Filer A, et al. Synergistic induction of local glucocorticoid generation by inflammatory cytokines and glucocorticoids: implications for inflammation associated bone loss. Ann Rheum Dis. 2010;69(6):1185–90.

    Article  CAS  PubMed  Google Scholar 

  186. Justesen J, Mosekilde L, Holmes M, Stenderup K, Gasser J, Mullins JJ, et al. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation. Endocrinology. 2004;145(4):1916–25.

    Article  CAS  PubMed  Google Scholar 

  187. Sher LB, Harrison JR, Adams DJ, Kream BE. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int. 2006;79(2):118–25.

    Article  CAS  PubMed  Google Scholar 

  188. Cooper MS, Blumsohn A, Goddard PE, Bartlett WA, Shackleton CH, Eastell R, et al. 11beta-hydroxysteroid dehydrogenase type 1 activity predicts the effects of glucocorticoids on bone. J Clin Endocrinol Metab. 2003;88(8):3874–7.

    Article  CAS  PubMed  Google Scholar 

  189. Windahl SH, Andersson N, Borjesson AE, Swanson C, Svensson J, Moverare-Skrtic S, et al. Reduced bone mass and muscle strength in male 5alpha-reductase type 1 inactivated mice. PLoS One. 2011;6(6), e21402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tiganescu A, Walker EA, Hardy RS, Mayes AE, Stewart PM. Localization, age- and site-dependent expression, and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in skin. J Invest Dermatol. 2011;131(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  191. Vukelic S, Stojadinovic O, Pastar I, Rabach M, Krzyzanowska A, Lebrun E, et al. Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J Biol Chem. 2011;286(12):10265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Terao M, Murota H, Kimura A, Kato A, Ishikawa A, Igawa K, et al. 11beta-Hydroxysteroid dehydrogenase-1 is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair. PLoS One. 2011;6(9), e25039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cirillo N, Prime SS. Keratinocytes synthesize and activate cortisol. J Cell Biochem. 2011;112(6):1499–505.

    Article  CAS  PubMed  Google Scholar 

  195. Napolitano A, Voice MW, Edwards CR, Seckl JR, Chapman KE. 11Beta-hydroxysteroid dehydrogenase 1 in adipocytes: expression is differentiation-dependent and hormonally regulated. J Steroid Biochem Mol Biol. 1998;64(5-6):251–60.

    Article  CAS  PubMed  Google Scholar 

  196. Tiganescu A, Tahrani AA, Morgan SA, Otranto M, Desmouliere A, Abrahams L, et al. 11beta-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects. J Clin Invest. 2013;123(7):3051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tiganescu A, Hupe M, Uchida Y, Mauro T, Elias PM, Holleran WM. Increased glucocorticoid activation during mouse skin wound healing. J Endocrinol. 2014;221(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  198. Smith RE, Maguire JA, Stein-Oakley AN, Sasano H, Takahashi K, Fukushima K, et al. Localization of 11 beta-hydroxysteroid dehydrogenase type II in human epithelial tissues. J Clin Endocrinol Metab. 1996;81(9):3244–8.

    CAS  PubMed  Google Scholar 

  199. Shimojo M, Ricketts ML, Petrelli MD, Moradi P, Johnson GD, Bradwell AR, et al. Immunodetection of 11β-hydroxysteroid dehydrogenase type 2 in human mineralocorticoid target tissues: Evidence for nuclear localization. Endocrinology. 1997;138:1305–11.

    CAS  PubMed  Google Scholar 

  200. Perogamvros I, Keevil BG, Ray DW, Trainer PJ. Salivary cortisone is a potential biomarker for serum free cortisol. J Clin Endocrinol Metab. 2010;95(11):4951–8.

    Article  CAS  PubMed  Google Scholar 

  201. Bocchi B, Kenouch S, Lamarre-Cliche M, Muffat-Joly M, Capron MH, Fiet J, et al. Impaired 11-beta hydroxysteroid dehydrogenase type 2 activity in sweat gland ducts in human essential hypertension. Hypertension. 2004;43(4):803–8.

    Article  CAS  PubMed  Google Scholar 

  202. Leckie C, Chapman KE, Edwards CR, Seckl JR. LLC-PK1 cells model 11 beta-hydroxysteroid dehydrogenase type 2 regulation of glucocorticoid access to renal mineralocorticoid receptors. Endocrinology. 1995;136(12):5561–9.

    CAS  PubMed  Google Scholar 

  203. Ferrari P. The role of 11beta-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta. 2010;1802(12):1178–87.

    Article  CAS  PubMed  Google Scholar 

  204. Watson Jr B, Bergman SM, Myracle A, Callen DF, Acton RT, Warnock DG. Genetic association of 11 beta-hydroxysteroid dehydrogenase type 2 (HSD11B2) flanking microsatellites with essential hypertension in blacks. Hypertension. 1996;28(3):478–82.

    Article  CAS  PubMed  Google Scholar 

  205. Mongia A, Vecker R, George M, Pandey A, Tawadrous H, Schoeneman M, et al. Role of 11betaHSD type 2 enzyme activity in essential hypertension and children with chronic kidney disease (CKD). J Clin Endocrinol Metab. 2012;97(10):3622–9.

    Article  CAS  PubMed  Google Scholar 

  206. Quinkler M, Bumke-Vogt C, Meyer B, Bahr V, Oelkers W, Diederich S. The human kidney is a progesterone-metabolizing and androgen-producing organ. J Clin Endocrinol Metab. 2003;88(6):2803–9.

    Article  CAS  PubMed  Google Scholar 

  207. Whorwood CB, Ricketts ML, Stewart PM. Epithelial cell localization of type 2 11 beta-hydroxysteroid dehydrogenase in rat and human colon. Endocrinology. 1994;135(6):2533–41.

    CAS  PubMed  Google Scholar 

  208. Zhang MZ, Xu J, Yao B, Yin H, Cai Q, Shrubsole MJ, et al. Inhibition of 11beta-hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. J Clin Invest. 2009;119(4):876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Walker BR, Connacher AA, Lindsay RM, Webb DJ, Edwards CR. Carbenoxolone increases hepatic insulin sensitivity in man: a novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. J Clin Endocrinol Metab. 1995;80(11):3155–9.

    CAS  PubMed  Google Scholar 

  210. Andrews RC, Rooyackers O, Walker BR. Effects of the 11beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab. 2003;88(1):285–91.

    Article  CAS  PubMed  Google Scholar 

  211. Tomlinson JW, Sherlock M, Hughes B, Hughes SV, Kilvington F, Bartlett W, et al. Inhibition of 11β-HSD1 activity in vivo limits glucocorticoid exposure to human adipose tissue and decreases lipolysis. J Clin Endocrinol Metab. 2007;92(3):857–64.

    Article  CAS  PubMed  Google Scholar 

  212. Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, Yao W, et al. The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care. 2010;33(7):1516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Feig PU, Shah S, Hermanowski-Vosatka A, Plotkin D, Springer MS, Donahue S, et al. Effects of an 11beta-hydroxysteroid dehydrogenase type 1 inhibitor, MK-0916, in patients with type 2 diabetes mellitus and metabolic syndrome. Diabetes Obes Metab. 2011;13(6):498–504.

    Article  CAS  PubMed  Google Scholar 

  214. Shah S, Hermanowski-Vosatka A, Gibson K, Ruck RA, Jia G, Zhang J, et al. Efficacy and safety of the selective 11beta-HSD-1 inhibitors MK-0736 and MK-0916 in overweight and obese patients with hypertension. J Am Soc Hypertens. 2011;5(3):166–76.

    Article  CAS  PubMed  Google Scholar 

  215. Courtney R, Stewart PM, Toh M, Ndongo MN, Calle RA, Hirshberg B. Modulation of 11β-hydroxysteroid dehydrogenase (11β-HSD) activity biomarkers and pharmacokinetics of PF-00915275, a selective 11β-HSD1 inhibitor. J Clin Endocrinol Metab. 2008;93(2):550–6.

    Article  CAS  PubMed  Google Scholar 

  216. Stefan N, Ramsauer M, Jordan P, Nowotny B, Kantartzis K, Machann J, et al. Inhibition of 11beta-HSD1 with RO5093151 for non-alcoholic fatty liver disease: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):406–16.

    Article  CAS  PubMed  Google Scholar 

  217. Morgan SA, McCabe EL, Gathercole LL, Hassan-Smith ZK, Larner DP, Bujalska IJ, et al. 11beta-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A. 2014;111(24):E2482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang Y, Yan C, Liu L, Wang W, Du H, Fan W, et al. 11Beta-hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue. Am J Physiol Endocrinol Metab. 2015;308(1):E84–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy W. Tomlinson Ph.D., F.R.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sbardella, E., Tomlinson, J.W. (2017). Cortisol Metabolism as a Regulator of the Tissue-Specific Glucocorticoid Action. In: Geer, E. (eds) The Hypothalamic-Pituitary-Adrenal Axis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-45950-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45950-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45948-6

  • Online ISBN: 978-3-319-45950-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics