Skip to main content

Spontaneous Emission in Nonlocal Metamaterials with Spatial Dispersion

  • Chapter
  • First Online:
Book cover Quantum Plasmonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 185))

Abstract

Recent successes in fabrication, characterization, numerical computations, and theory have brought to life a new class of composite materials with engineered optical properties, metamaterials. Uniaxial anisotropic artificially created structures based on plasmonic nanowire arrays have emerged as a versatile platform for negative refraction, subwavelength optics, biosensing, acoustic sensing, and nonlinearity engineering. It has been demonstrated, both experimentally and theoretically, that the optical response of plasmonic nanowire arrays is strongly affected by nonlocal electromagnetism, a phenomenon where permittivity of metamaterial strongly depends not only on the frequency, but also on wavevector of the plane wave interacting with this structure. Nonlocal dielectric response leads to excitation of additional electromagnetic wave that does not exist in conventional, local, metamaterials. The dispersion of this wave can be engineered by adjusting composition and geometry of metamaterial. In this chapter we present comprehensive review of nonlocal electromagnetic properties in plasmonic nanowire metamaterials. We begin by introducing the material platform, explain the theoretical approach for nonlocal homogenization, and finally discuss the implication of material nonlocality for emission of light in nonlocal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nader Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007)

    Article  ADS  Google Scholar 

  2. John B. Pendry, David R. Smith, Reversing light with negative refraction. Phys. Today 57, 37–43 (2004)

    Article  Google Scholar 

  3. V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1(1), 41–48 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. B. John Pendry, D. Schurig, R. David Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. W. Cai, et al. Optical cloaking with metamaterials. Nature photonics 1.4, pp. 224–227 (2007)

    Google Scholar 

  6. R. Atkinson, et al. Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys. Rev. B 73.23, 235402 (2006)

    Google Scholar 

  7. J. Yao, et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321.5891, 930–930 (2008)

    Google Scholar 

  8. B.D.F. Casse et al., Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96(2), 023114 (2010)

    Article  ADS  Google Scholar 

  9. Mário Silveirinha, Nader Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97(15), 157403 (2006)

    Article  ADS  Google Scholar 

  10. C. Erik Garnett, L. Mark Brongersma, Yi Cui, D. Michael Mc Gehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)

    Article  ADS  Google Scholar 

  11. A. Aubry, D. Lei, A. Fernandez-Dominguez, Y. Sonnefraud, S.A. Maier, J.B. Pendry, Plasmonic light harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574 (2010)

    Article  ADS  Google Scholar 

  12. S.A. Maier, P. Kik, H.A. Atwater, S. Meltzer, E. Harel, B. Koel, A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229 (2003)

    Article  ADS  Google Scholar 

  13. V.A. Podolskiy, E.E. Narimanov, Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101(R) (2005)

    Article  ADS  Google Scholar 

  14. M.A. Noginov and V.A. Podolskiy (eds.), Tutorials in Metamaterials (CRC Press, Boca Raton, FL, 2012)

    Google Scholar 

  15. N. Fung, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  16. L.V. Alexeyev, E.E. Narimanov, Slow light and 3D imaging with non-magnetic negative index systems. Opt. Exp. 14, 11184 (2006)

    Article  ADS  Google Scholar 

  17. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Exp. 14, 8247–8256 (2006)

    Article  ADS  Google Scholar 

  18. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)

    Article  ADS  Google Scholar 

  19. A. Salandrino, N. Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006)

    Article  ADS  Google Scholar 

  20. I.I. Smolyaninov, Y.J. Hung, C.C. Davis, Science 315, 1699 (2007)

    Article  ADS  Google Scholar 

  21. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  22. A.N. Poddubny, P.A. Belov, P. Ginzburg, A.V. Zayats, Y.S. Kivshar, Microscopic model of Purcell enhancement in hyperbolic metamaterials. Phys. Rev. B 86, 035148 (2012)

    Article  ADS  Google Scholar 

  23. I.V. Iorsh, A.N. Poddubny, P. Ginzburg, P.A. Belov, Y.S. Kivshar compton-like polariton scattering in hyperbolic metamaterials. Phys Rev. Lett. 114, 185501 (2015)

    Google Scholar 

  24. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946 (2007)

    Article  ADS  Google Scholar 

  25. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867 (2009)

    Article  ADS  Google Scholar 

  26. J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20, 7 (2012)

    Article  Google Scholar 

  27. L. Alekseyev, V.A. Podolskiy, E. Narimanov, Homogeneous hyperbolic systems for terahertz and far-infrared frequencies. Adv. Optoelectron. 2012, 267564 (2012)

    Article  Google Scholar 

  28. V.A. Podolskiy, L. Alekseyev, E.E. Narimanov, Strongly anisotropic media: the THz perspectives of left-handed materials. J. Mod. Opt. 52(16), 2343 (2005)

    Article  ADS  Google Scholar 

  29. N. Vasilantonakis, G.A. Wurtz, V.A. Podolskiy, A.V. Zayats, Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Opt. Exp. 23, 14329 (2015)

    Article  ADS  Google Scholar 

  30. S. Ishii, A.V. Kildishev, E. Narimanov, V.M. Shalaev, V.P. Drachev, Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photon. Rev. 7, 2 (2013)

    Article  Google Scholar 

  31. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Phot. 1, 224 (2007)

    Article  Google Scholar 

  32. E.E. Narimanov, A.V. Kildishev, Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009)

    Article  ADS  Google Scholar 

  33. D.A. Genov, S. Zhang, X. Zhang, Mimicking celestial mechanics in metamaterials. Nat. Phys. Adv. online pub. NPHYS1338 (2009)

    Google Scholar 

  34. G.A. Wurtz, R. Pollard, W. Hendren, G.P. Wiederrecht, D.J. Gosztola, V.A. Podolskiy, A.V. Zayats, Designed nonlocality-enhanced sub-picosecond nonlinearities in plasmonic nanorod metamaterial. Nat. Nanotechnol. 6, 107 (2011)

    Article  ADS  Google Scholar 

  35. G.A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, A.V. Zayats, Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. Opt. Exp. 16, 7460 (2008)

    Article  ADS  Google Scholar 

  36. S. Melle, J.L. Menendez, G. Armelles, D. Navas, M. Vanzquez, K. Nielsch, R.B. Wehrspohn, U. Gozele, Magneto-optical properties of nickel nanowire arrays. Appl. Phys. Lett. 83, 4547 (2003)

    Article  ADS  Google Scholar 

  37. Y. Veniaminova, A.A. Stashkevich, Y. Roussigne, S.M. Cherif, T.V. Murzina, A.P. Murphy, R. Atkinson, R.J. Pollard, A.V. Zayats, Brillouin light scattering by spin waves in magnetic metamaterials based on Co nanordos. Opt. Mat. Exp 2, 1260 (2012)

    Article  Google Scholar 

  38. B. Wells, A.V. Zayats, V.A. Podolskiy, Nonlocal optics of plasmonic nanowire metamaterials. Phys. Rev. B 89, 035111 (2014)

    Article  ADS  Google Scholar 

  39. R.J. Pollard, A. Murphy, W.R. Hendren, P.R. Evans, R. Atkinson, G.A. Wurtz, A.V. Zayats, V.A. Podolskiy, Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009)

    Article  ADS  Google Scholar 

  40. T. Geng, S. Zhuang, J. Gao, X. Yang, Nonlocal effective medium approximation for metallic nanorod metamaterials. Phys. Rev. B. 91, 245128 (2015)

    Article  ADS  Google Scholar 

  41. V.A. Podolskiy, P. Ginzburg, B. Wells, A.V. Zayats, Light emission in nonlocal plasmonic metamaterials. Faraday Discuss. 178, 61 (2015)

    Article  Google Scholar 

  42. E.E. Narimanov, Infinite at any frequency: the photonic density of states in (meta)materials with hyperbolic dispersion and related phenomena, in Proceedings of SPIE Optics and Photonics, pp. 7754–09, 54 (2010); full manuscript is in press

    Google Scholar 

  43. H.K. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336, 205 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  44. O. Kidwai, S. Zhukovsky, J.E. Sipe, Opt. Lett. 36, 2530 (2011)

    Article  ADS  Google Scholar 

  45. C.I. Cortes, W. Newman, S. Molesky, Z. Jacob, J. Opt. 14, 063001 (2012)

    Article  ADS  Google Scholar 

  46. J.C.M. Garnett, Philos. Trans. R. Soc. London, Ser. B 203, 385 (1904)

    Google Scholar 

  47. G.W. Milton, The theory of composites (Cambridge U. Press, Cambridge, UK, 2002)

    Book  MATH  Google Scholar 

  48. A.L. Pokrovsky, A.L. Efros, Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals. Phys. Rev. B 65, 045110 (2002)

    Article  ADS  Google Scholar 

  49. P.A. Belov, R. Marques, S.I. Maslovski, I.S. Nefedov, M. Silveirinha, C.R. Simovski, S.A. Tretyakov, Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003)

    Article  ADS  Google Scholar 

  50. M. Silveirinha, Nonlocal homogenization model for a periodic array of epsilon-negative rods. Phys. Rev. E 73, 046612 (2006)

    Article  ADS  Google Scholar 

  51. V.L. Ginzburg, Electromagnetic waves in isotropic and crystalline media characterized by dielectric permittivity with spatial dispersion. JETP 34, 1096 (1958)

    MathSciNet  Google Scholar 

  52. V.M. Agranovich, V.L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, Springer Series in Solid-State Sciences, vol. 42 (Springer, Berlin, 1984)

    Google Scholar 

  53. M. Born, E. Wolf, Principles of Optics (Press, Cambridge U, 1999)

    Book  Google Scholar 

  54. M.O. Scully, M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997)

    Google Scholar 

  55. P. Ginzburg, Accelerating spontaneous emission in open resonators. Annalen der Physik (2016)

    Google Scholar 

  56. J.E. Sipe, Photons in dispersive dielectrics. J. Opt. A: Pure Appl. Opt. 11, 114006 (2009)

    Article  ADS  Google Scholar 

  57. C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 2005)

    Google Scholar 

  58. A.P. Slobozhanyuk, P. Ginzburg, D.A. Powell, I. Iorsh, A.S. Shalin, P. Segovia, A.V. Krasavin et al., Phys. Rev. B 92, 195127 (2015)

    Article  ADS  Google Scholar 

  59. P. Ginzburg, A.V. Krasavin, A.N. Poddubny, P.A. Belov, Y.S. Kivshar, A.V. Zayats, Phys. Rev. Lett. 111, 036804 (2013)

    Article  ADS  Google Scholar 

  60. Vogel, W. Welsch, D-G, Quantum Optics, 3rd, Revised and Extended Edition (Wiley 2006)

    Google Scholar 

  61. S.M. Barnett, B. Huttner, R. Loudon, Phys. Rev. Lett. 68, 3698 (1992)

    Article  ADS  Google Scholar 

  62. H.T. Dung, S.Y. Buhmann, D.G. Welsch, Phys. Rev. A 74, 023803 (2006)

    Article  ADS  Google Scholar 

  63. S. Scheel, L. Knoll, D.G. Welsch, Phys. Rev. A 60, 4094 (1999)

    Article  ADS  Google Scholar 

  64. S. Scheel, L. Knoll, D.G. Welsch, Phys. Rev. A 61, 069901 (2000)

    Article  ADS  Google Scholar 

  65. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge U Press, Cambridge UK, 2006)

    Book  Google Scholar 

  66. S.R.J. Brueck, IEEE J. Sel. Top. Quantum Elctron. 6, 899 (2000)

    Google Scholar 

  67. A.P. Slobozhanyuk, P. Ginzburg, D.A. Powell, I. Iorsh, A.S. Shalin, P. Segovia, A.V. Krasavin, G.A. Wurtz, V.A. Podolskiy, P.A. Belov, A.V. Zayats, Purcell effect in hyperbolic metamaterial resonators. Phys. Rev. B 92, 195127 (2015)

    Article  ADS  Google Scholar 

  68. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Google Scholar 

  69. G.W. Ford, W.H. Weber, Electromagnetic effects on a molecule at a metal surface: I. Effects of nonlocality and finite molecular size. Surf. Sci. 109, 451–481 (1981)

    Article  ADS  Google Scholar 

  70. R. Bonifacio, L.A. Lugiato, Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507 (1975)

    Article  ADS  Google Scholar 

  71. D. Martín-Cano, L. Martín-Moreno, F.J. García-Vidal, E. Moreno, Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. Nano Lett. 10, 3129–3134 (2010)

    Article  ADS  Google Scholar 

  72. T. Tumkur, G. Zhu, P. Black, Y.A. Barnakov, C.E. Bonner, M.A. Noginov, Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 99, 151115 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been funded in part by ESPRC (UK), the ERC iPLASMM project (321268), and the US Army Research Office (Grant No. W911NF-12-1-0533). A.Z. acknowledges support from the Royal Society and the Wolfson Foundation. P.G. acknowledges TAU Rector Grant and German-Israeli Foundation (GIF, grant number 2399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wells, B., Ginzburg, P., Podolskiy, V.A., Zayats, A.V. (2017). Spontaneous Emission in Nonlocal Metamaterials with Spatial Dispersion. In: Bozhevolnyi, S., Martin-Moreno, L., Garcia-Vidal, F. (eds) Quantum Plasmonics. Springer Series in Solid-State Sciences, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-45820-5_11

Download citation

Publish with us

Policies and ethics