Skip to main content

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

  • 2920 Accesses

Abstract

A principled approach for automated alignment of LC-MS chromatograms is critical for reconciling observations across settings and devices, and for annotating large databases of chromatograms. While current algorithms rely on certain pre-processing steps, such as peak detection and matching, tasks that are often subjective and require human intervention, we present a simple and yet fully automated, computational technique for alignment of peaks/nulls in chromatograms. The basic idea is to view chromatograms as real-valued functions on a fixed interval, and derive a geometric, template-based alignment approach. The template is constructed as the sample mean of the given functions under an extended Fisher-Rao metric, and the individual functions are aligned to this mean using time-warping under the same metric. While the original form of the metric is complicated, a square-root slope function representation simplifies it to the \(\mathbb{L}^{2}\) metric, and makes the overall algorithm very efficient. We demonstrate these ideas using a number of alignment experiments, both pairwise and groupwise, and highlight the effectiveness of this automated procedure in spectral alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertsekas, D. P. (1995). Dynamic programming and optimal control. Boston: Athena Scientific.

    MATH  Google Scholar 

  2. Bloemberg, T. G., Gerretzen, J., Lunshof, A., Wehrens, R., & Buydens, L. M. (2013). Warping methods for spectroscopic and chromatographic signal alignment: A tutorial. Analytica Chimica Acta, 781, 14–32.

    Article  Google Scholar 

  3. Browne, W. J., Dryden, I. L., Handley, K., Mian, S., & Schadendorf, D. (2010). Mixed effect modelling of proteomic mass spectrometry data by using Gaussian mixtures. Journal of the Royal Statistical Society. Series C (Applied Statistics), 59(4), 617–633.

    MathSciNet  Google Scholar 

  4. James, G. (2007). Curve alignments by moments. Annals of Applied Statistics, 1(2), 480–501.

    Article  MathSciNet  MATH  Google Scholar 

  5. Joshi, S. H., Klassen, E., Srivastava, A., & Jermyn, I. H. (2007). A novel representation for Riemannian analysis of elastic curves in \(\mathbb{R}^{n}\). In Proceedings of IEEE CVPR (pp. 1–7).

    Google Scholar 

  6. Kneip, A., & Ramsay, J. O. (2008). Combining registration and fitting for functional models. Journal of the American Statistical Association, 103(483), 1155–1165.

    Article  MathSciNet  MATH  Google Scholar 

  7. Koch, I., Hoffmann, P., & Marron, J. S. (2013). Proteomics profiles from mass spectrometry. Electronic Journal of Statistics, 8(2), 1703–1713.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kurtek, S., Srivastava, A., & Wu, W. (2011). Signal estimation under random time-warpings and nonlinear signal alignment. In Proceedings of Advances in Neural Information Processing Systems (NIPS), Grenada, Spain (pp. 676–683).

    Google Scholar 

  9. Liu, X., & Muller, H. G. (2004). Functional convex averaging and synchronization for time-warped random curves. Journal of the American Statistical Association, 99, 687–699.

    Article  MathSciNet  MATH  Google Scholar 

  10. Marron, J. S., Ramsay, J. O., Sangalli, L. M., & Srivastava, A. (2015). Functional Data analysis of amplitude and phase variation. Statistical Science, 30(4), 468–484.

    Article  MathSciNet  Google Scholar 

  11. Robinson, D. (2012, August). Functional Analysis and Partial Matching in the Square Root Velocity Framework. PhD thesis, Florida State University.

    Google Scholar 

  12. Srivastava, A., Klassen, E., Joshi, S. H., & Jermyn, I. H. (2011, July). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 1415–1428.

    Google Scholar 

  13. Srivastava, A., Wu, W., Kurtek, S., Klassen, E., & Marron, J. S. (2011). Registration of functional data using Fisher-Rao metric. arXiv:1103.3817v2 [math.ST].

    Google Scholar 

  14. Tang, R., & Muller, H. G. (2008). Pairwise curve synchronization for functional data. Biometrika, 95(4), 875–889.

    Article  MathSciNet  MATH  Google Scholar 

  15. Tucker, J. D., Wu, W., & Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis, 61, 50–66.

    Article  MathSciNet  MATH  Google Scholar 

  16. Tucker, J. D., Wu, W., & Srivastava, A. (2014). Analysis of proteomics data: Phase amplitude separation using an extended Fisher-Rao metric. Electronic Journal of Statistics, 8(2), 1724–1733.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wallace, W. E., Srivastava, A., Telu, K. H., & Simon-Manso, Y. (2014). Pairwise alignment of chromatograms using an extended Fisher-Rao metric. Analytica Chimica Acta, 841, 10–16.

    Article  Google Scholar 

  18. Wong, J. W., Cagney, G., & Cartwright, H. M. (2005). SpecAlign – processing and alignment of mass spectra datasets. Bioinformatics, 21(9), 2088–2090.

    Article  Google Scholar 

Download references

Acknowledgements

The author is very thankful to the people who provided data for experiments presented in this paper—Prof. I. Koch of Adelaide, South Australia and Dr. Yamil Simon of National Institute of Standards and Technology (NIST), Gaithersburg, Maryland. This research was supported in part by the grants NSF DMS-1208959 and NSF CCF 1319658, and support from the Statistics Division at NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srivastava, A. (2017). Automated Alignment of Mass Spectrometry Data Using Functional Geometry. In: Datta, S., Mertens, B. (eds) Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45809-0_2

Download citation

Publish with us

Policies and ethics