Skip to main content

ACC and Vaterite as Intermediates in the Solution-Based Crystallization of CaCO3

  • Chapter
  • First Online:
Book cover New Perspectives on Mineral Nucleation and Growth

Abstract

Amorphous calcium carbonate (ACC) and vaterite are not very common in abiotic systems, but they play a very significant role in biomineralization processes and are key in the global carbon cycle. Despite their importance, many questions about the factors affecting the mechanisms of formation and stabilization during biomineralization processes remain unanswered, because most of the information so far is obtained from experimental synthesis in abiotic conditions. In recent years, it has been shown that ACC and vaterite have complex structures and chemistries. Their formation and stability are drastically affected by pH, the presence of (in)organics (e.g., Mg2+, SO4 2−, aspartic acid, glutamic acid, citric acid, etc.), temperature, and supersaturation. Changes in any of these variables affect the lifetime of ACC and the crystallization rates and pathways to vaterite or other CaCO3 polymorphs. In addition, the morphologies, composition, sizes, and properties of ACC and vaterite are highly affected. This chapter provides a perspective on the current state-of-the-art research on the formation and crystallization mechanisms of ACC to vaterite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed IAM, Benning LG, Kakonyi G, Sumoondur A, Terrill N, Shaw S (2010) The formation of green rust sulfate: in situ and time-resolved scattering and electrochemistry. Langmuir 26:6593–6603

    Article  Google Scholar 

  • Andreassen JP, Flaten EM, Beck R, Lewis AE (2010) Investigations of spherulitic growth in industrial crystallization. Chem Eng Res Des 88:1163–1168

    Article  Google Scholar 

  • Beck R, Andreassen JP (2010) Spherulitic growth of calcium carbonate. Cryst Growth Des 10:2934–2947

    Article  Google Scholar 

  • Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond Ser B 264:461–465

    Article  Google Scholar 

  • Bots P, Benning LG, Rickaby REM, Shaw S (2011) The role of SO4 in the switch from calcite to aragonite seas. Geology 39:331–334

    Article  Google Scholar 

  • Bots P, Benning LG, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw W (2012) Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst Growth Des 12:3806–3814

    Article  Google Scholar 

  • Boyjoo Y, Pareek VK, Liu J (2014) Synthesis of micro and nano-sized calcium carbonate particles and their applications. J Mater Chem A 2:14270–14288

    Article  Google Scholar 

  • Brinza L, Schofield PF, Hodson ME, Weller S, Ignatyev K, Geraki K, Quinn PD, Mosselmans JFW (2014) Combining μXANES and μXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris. J Synchrotron Radiat 21:235–241

    Article  Google Scholar 

  • Brinza L, Vu HP, Shaw S, Mosselmans FJ, Benning LG (2015) Effect of Mo and V on the hydrothermal crystallization of hematite from ferrihydrite: an in situ energy dispersive X-Ray diffraction and X-Ray absorption spectroscopy study. Cryst Growth Des 15:768–4780

    Article  Google Scholar 

  • Briones MJI, López E, Méndez J, Rodríguez JB, Gago-Duport L (2008) Biological control over the formation and storage of amorphous calcium carbonate by earthworms. Mineral Mag 72:227–231

    Article  Google Scholar 

  • Burke IT, Mosselmans FW, Shaw S, Peacock CL, Benning LG, Cocker VS (2015) Impact of the diamond light source on research in earth and environmental sciences: current work and future perspectives. In: Materlik G, Stuart D, Rayment T (eds) Research achieved with diamond and future perspectives. Philos Trans A 373:20130151

    Google Scholar 

  • Cahill CL, Benning LG, Barnes HL, Parise JB (2000) In situ time-resolved X-ray diffraction of iron sulfides during hydrothermal pyrite growth. Chem Geol 167:53–63

    Article  Google Scholar 

  • Cai A, Xu X, Pan H, Tao J, Liu R, Tang R, Cho K (2008) Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation. J Phys Chem C 112:11324–11330

    Article  Google Scholar 

  • Canti MG, Piearce TG (2003) Morphology and dynamics of calcium carbonate granules produced by different earthworm species. Pedobiologia 47:511–521

    Google Scholar 

  • Davidson LE, Shaw S, Benning LG (2008) The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions. Am Mineral 93:1326–1337

    Article  Google Scholar 

  • Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 2:590

    Article  Google Scholar 

  • Demichelis R, Raiteri P, Gale JD (2017) Ab Initio modelling of the structure and properties of crystalline calcium carbonate. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 113–136

    Google Scholar 

  • Di Tommaso D, De Leeuw NH (2010) Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates: insights from first principles simulations. Phys Chem Chem Phys 12:894–901

    Article  Google Scholar 

  • Dove PM, De Yoreo JJ, Weiner S (eds) (2003) Reviews in mineralogy and geochemistry, vol 154. Mineralogical Society of America, Chantilly

    Google Scholar 

  • Faatz M, Gröhn F, Wegner G (2004) Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Adv Mater 16:996–1000

    Article  Google Scholar 

  • Fedorov PP, Nazarkin MV, Zakalyukin RM (2002) On polymorphism and morphotropism of rare earth sesquioxides. Crystallogr Rep 47:281–286

    Article  Google Scholar 

  • Foran E, Weiner S, Fine M (2013) Biogenic fish-gut calcium carbonate is a stable amorphous phase in the gilt-head seabream sparus aurata. Sci Rep 3:1700

    Article  Google Scholar 

  • Fujiwara M, Shiokawa K, Araki M, Ashitaka N, Morigaki K, Kubota T, Nakahara Y (2010) Encapsulation of proteins into CaCO3 by phase transition from vaterite to calcite. Cryst Growth Des 10:4030–4037

    Article  Google Scholar 

  • Gago-Duport L, Briones MJ, Rodríguez JB, Covelo B (2008) Amorphous calcium carbonate biomineralization in the earthworm’s calciferous gland: pathways to the formation of crystalline phases. J Struct Biol 162:422–435

    Article  Google Scholar 

  • Gal A, Weiner S, Addadi L (2010) The stabilizing effect of silicate on biogenic and synthetic amorphous calcium carbonate. J Am Chem Soc 132:13208–13211

    Article  Google Scholar 

  • Gal A, Hirsch A, Siegel S, Li C, Aichmayer B, Politi Y, Fratzl P, Weiner S, Addadi L (2012) Plant cystoliths: a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. Chemistry 18:10262–10270

    Article  Google Scholar 

  • Gal A, Habraken W, Gur D, Fratzl P, Weiner S, Addadi L (2013) Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. Angew Chem Int Ed 52:4867–4870

    Article  Google Scholar 

  • Gal A, Kahil K, Vidavsky N, DeVol RT, Gilbert PUPA, Fratzl P, Weiner S, Addadi L (2014) Particle accretion mechanism underlies biological crystal growth from an amorphous precursor phase. Adv Funct Mater 24:5420–5426

    Article  Google Scholar 

  • Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:819–1822

    Article  Google Scholar 

  • Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43:2348–2371

    Article  Google Scholar 

  • Gong YUT, Killian CE, Olson IC, Appathurai NP, Amasino AL, Martin MC, Holt LJ, Wilt FH, Gilbert PUPA (2012) Phase transitions in biogenic amorphous calcium carbonate. Proc Natl Acad Sci U S A 109:6088–6093

    Article  Google Scholar 

  • Goodwin AL, Michel FM, Phillips BL, Keen DA, Dove MT, Reeder RJ (2010) Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate. Chem Mater 22:3197–3205

    Article  Google Scholar 

  • Gránásy L, Pusztai T, Tegze G, Warren JA, Douglas JF (2005) Growth and form of spherulites. Phys Rev E 72:011605

    Article  Google Scholar 

  • Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals mineral nanoparticles and earth systems. Science 319:1631–1635

    Article  Google Scholar 

  • Hodson ME, Benning LG, Demarchi B, Penkman KEH, Rodriguez-Blanco JD, Schofield PF, Versteegh EAA (2015) Biomineralisation by earthworms – an investigation into the stability and distribution of amorphous calcium carbonate. Geochem Trans 16:4

    Article  Google Scholar 

  • Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179

    Article  Google Scholar 

  • Hu Q, Zhang J, Teng H, Becker U (2012) Growth process and crystallographic properties of ammonia-induced vaterite. Am Mineral 97:1437–1445

    Article  Google Scholar 

  • Isaure MP, Sarret G, Harada E, Choi YE, Marcus MA, Fakra SC, Geoffroy N, Pairis S, Susini J, Clemens S, Manceau A (2010) Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes. Geochim Cosmochim Acta 74:5817

    Article  Google Scholar 

  • Kabalah-Amitai L, Mayzel B, Kauffmann Y, Fitch AN, Bloch L, Gilbert PUPA, Pokroy B (2013) Vaterite crystals contain two interspersed crystal structures. Science 340:454–457

    Article  Google Scholar 

  • Kašparová P, Antonietti M, Cölfen H (2004) Double hydrophilic block copolymers with switchable secondary structure as additives for crystallization control. Colloids Surf A Physicochem Eng Asp 250:153–162

    Article  Google Scholar 

  • Kim YY, Hetherington NB, Noel EH, Kröger R, Charnock JM, Christenson HK, Meldrum FC (2011) Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate. Angew Chem Int Ed Engl 50:12572–12577

    Article  Google Scholar 

  • Kojima Y, Kawanobe A, Yasue T, Arai Y (1993) Synthesis of amorphous calcium carbonate and its crystallization. J Ceram Soc Jpn 101:1145–1152

    Article  Google Scholar 

  • Lowenstam HA, Abbott DP (1975) Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea). Science 188:363–365

    Article  Google Scholar 

  • Malone JM, Baker PA, Burns SJ (1996) Recrystallization of dolomite: an experimental study from 50–200°C. Geochim Cosmochim Acta 60:2189–2207

    Article  Google Scholar 

  • Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432

    Article  Google Scholar 

  • Naka K, Huang Y, Chujo Y (2006) Formation of stable vaterite with poly(acrylic acid) by the delayed addition method. Langmuir 22:7760–7767

    Article  Google Scholar 

  • Nielsen MH, Aloni S, De Yoreo JJ (2014) In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345:1158–1162

    Article  Google Scholar 

  • Ogino T, Suzuki T, Sawada K (1987) The formation and transformation mechanism of calcium carbonate in water. Geochim Cosmochim Acta 51:2757–2767

    Article  Google Scholar 

  • Olderoy MO, Xie ML, Strand BL, Flaten EM, Sikorski P, Andreassen JP (2009) Growth and nucleation of calcium carbonate vaterite crystals in presence of alginate. Cryst Growth Des 9:5176–5183

    Article  Google Scholar 

  • Parakhonskiy BV, Haase A, Antolini R (2012) Sub-micrometer vaterite containers: synthesis substance loading and release. Angew Chem Int 51:1195–1197

    Article  Google Scholar 

  • Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PUPA (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the Sea urchin larval spicule. Proc Natl Acad Sci U S A 105:20045–20045

    Article  Google Scholar 

  • Pouget EM, Bomans PHH, Goos JACM, Frederik PM, With G, Sommerdijk NAJM (2009) The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323:1455–1458

    Article  Google Scholar 

  • Pouget EM, Bomans PHH, Dey A, Frederik PM, de With G, Sommerdijk NAJM (2010) The development of morphology and structure in hexagonal vaterite. J Am Chem Soc 132:11560–11565

    Article  Google Scholar 

  • Qiao L, Feng QL, Li Z (2007) Special vaterite found in freshwater lackluster pearls. Cryst Growth Des 7:275–279

    Article  Google Scholar 

  • Radha AV, Forbes TZ, Killian CE, Gilbert PUPA, Navrotsky A (2010) Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc Natl Acad Sci U S A 107:16438–16443

    Article  Google Scholar 

  • Raiteri P, Demichelis R, Gale JD, Kellermeier M, Gebauer D, Quigley D, Wright LB, Walsh TR (2012) Exploring the influence of organic species on pre-and post-nucleation calcium carbonate. Faraday Discuss 1:61–85

    Article  Google Scholar 

  • Rodriguez-Blanco JD, Shaw S, Benning LG (2008) How to make ‘stable’ ACC: protocol and preliminary structural characterization. Mineral Mag 72:283–286

    Article  Google Scholar 

  • Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite via vaterite. Nanoscale 3:265–271

    Article  Google Scholar 

  • Rodriguez-Blanco JD, Shaw S, Bots P, Roncal-Herrero T, Benning LG (2012) The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J Alloys Compd 536:S477–S479

    Article  Google Scholar 

  • Rodriguez-Blanco JD, Shaw S, Bots P, Roncal-Herrero T, Benning LG (2014) The role of Mg in the crystallisation of monohydrocalcite. Geochim Cosmochim Acta 127:204–220

    Article  Google Scholar 

  • Rodriguez-Blanco JD, Shaw S, Benning LG (2015) A route for the direct crystallization of dolomite. Am Mineral 100:1172–1181

    Article  Google Scholar 

  • Rowlands DLG, Webster RK (1971) Precipitation of vaterite in lake water. Nat Phys Sci 229:158

    Article  Google Scholar 

  • Sánchez-Román M, McKenzie JA, Wagener ALR, Romanek CS, Sánchez-Navas A, Vasconcelos C (2011) Experimentally determined biomediated Sr partition coefficient for dolomite: significance and implication for natural dolomite. Geochim Cosmochim Acta 75:887–904

    Article  Google Scholar 

  • Sand KK, Yang M, Makovicky E, Cooke DJ, Hassenkam T, Bechgaard K, Stipp SLS (2010) Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization. Langmuir 26:15239–15247

    Article  Google Scholar 

  • Sand KK, Rodriquez-Blanco JD, Makovicky E, Benning LG, Stipp SLS (2012) Crystallization of CaCO3 in water-alcohol mixtures: spherulitic growth polymorph stabilization and morphology change. Cryst Growth Des 12:845–853

    Article  Google Scholar 

  • Schenk AS, Albarracin EJ, Kim YY, Ihli J, Meldrum FC (2014a) Confinement stabilises single crystal vaterite rods. Chem Commun 50:4729–4732

    Article  Google Scholar 

  • Schenk AS, Cantaert B, Kim YY, Li Y, Read ES, Semsarilar M, Armes SP, Meldrum FC (2014b) Systematic study of the effects of polyamines on calcium carbonate precipitation. Chem Mater 26:2703–2711

    Article  Google Scholar 

  • Ševčík R, Pérez-Estébanez M, Viani A, Šašek P, Mácová P (2015) Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives. Powder Technol 284:265–271

    Article  Google Scholar 

  • Shen Q, Wei H, Zhou Y, Huang Y, Yang H, Wang D, Xu D (2006) Properties of amorphous calcium carbonate and the template action of vaterite spheres. J Phys Chem B 110:2994–3000

    Article  Google Scholar 

  • Shtukenberg AG, Punin YO, Gunn E, Kahr B (2012) Spherulites. Chem Rev 112:1805–1838

    Article  Google Scholar 

  • Sibley DF, Nordeng SH, Borkowski ML (1994) Dolomitization kinetics in hydrothermal bombs and natural settings. J Sediment Res 64:630–637

    Article  Google Scholar 

  • Tobler DJ, Benning LG (2011) The microbial diversity in Icelandic hot springs: temperature salinity pH and sinter growth rate effects. Extremophiles 15:473–485

    Article  Google Scholar 

  • Tobler DJ, Shaw S, Benning LG (2009) Quantification of initial steps of nucleation and growth of silica nanoparticles: an in-situ SAXS and DLS study. Geochim Cosmochim Acta 73:5377–5393

    Article  Google Scholar 

  • Tobler DJ, Rodriguez-Blanco JD, Dideriksen K, Sand KK, Bovet N, Benning LG, Stipp SLS (2014) Effect of aspartic acid and glycine on amorphous calcium carbonate (ACC) structure stability and crystallisation. Procedia Earth Planet Sci 10:143–148

    Article  Google Scholar 

  • Tobler DJ, Rodriguez-Blanco JD, Dideriksen K, Sand KK, Bovet N, Benning LG, Stipp SLS (2015) Citrate effects on amorphous calcium carbonate (ACC) structure stability and crystallization. Adv Funct Mater 25:3081–3090

    Article  Google Scholar 

  • Tobler DJ, Rodriguez-Blanco JD, Sørensen HO, Stipp SLS, Dideriksen K (2016) Effect of pH on amorphous calcium carbonate structure and transformation. Cryst Growth Des 16:4500–4508

    Article  Google Scholar 

  • Trushina D, Bukreeva TV, Kovalchuk MV, Antipina MN (2014) CaCO3 vaterite microparticles for biomedical and personal care applications. Mater Sci Eng C 45:644–65

    Article  Google Scholar 

  • Vallina B, Rodriguez-Blanco JD, Blanco JA, Benning LG (2014) The effect of heating on the morphology of crystalline neodymium hydroxycarbonate NdCO3OH. Mineral Mag 78:1391–1397

    Article  Google Scholar 

  • Vallina B, Rodriguez-Blanco JD, Brown AP, Blanco JA, Benning LG (2015) The role of amorphous precursors in the crystallization of La and Nd carbonates. Nanoscale 7:12166–12179

    Article  Google Scholar 

  • Vu HP, Shaw S, Brinza L, Benning LG (2010) Crystallization of hematite (alpha-Fe2O3) under alkaline condition: the effects of Pb. Cryst Growth Des 10:1544–1551

    Article  Google Scholar 

  • Wang J, Becker U (2012) Energetics and kinetics of carbonate orientational ordering in vaterite calcium carbonate. Am Mineral 97:1427–1436

    Article  Google Scholar 

  • Wang SS, Xu AW (2013) Amorphous calcium carbonate stabilized by a flexible biomimetic polymer inspired by marine mussels. Cryst Growth Des 13:1937–1942

    Article  Google Scholar 

  • Wang D, Wallace AF, De Yoreo JJ, Dove PM (2009) Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification. Proc Natl Acad Sci U S A 106:21511–21516

    Article  Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094

    Article  Google Scholar 

  • Wehrmeister U, Jacob DE, Soldati AL, Loges N, Häger T, Hofmeister W (2011) Amorphous nanocrystalline and crystalline calcium carbonates in biological materials. J Raman Spectrosc 42:926–935

    Article  Google Scholar 

  • Xu XR, Cai AH, Liu R, Pan HH, Tang RK, Cho KW (2008) The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate. J Cryst Growth 310:3779–3787

    Article  Google Scholar 

  • Zou Z, Bertinetti L, Politi Y, Jensen ACS, Weiner S, Addadi L, Fratzl P, Habraken WJEM (2015) Opposite particle size effect on amorphous calcium carbonate crystallization in water and during heating in air. Chem Mater 27:4237–4246

    Article  Google Scholar 

Download references

Acknowledgments

J.D. Rodriguez-Blanco would like to acknowledge the EU-funded NanoCArB Marie Curie Intra-European Fellowship (IEF) under contract PIEF-GA-2013-624016. K.K. Sand is grateful for funding from the Danish Council for Independent Research on their Individual Post Docs (0602-02915B) and Sapere Aude program (0602-02654B) and support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences at Pacific Northwest National Laboratory, which is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Diego Rodriguez-Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodriguez-Blanco, J.D., Sand, K.K., Benning, L.G. (2017). ACC and Vaterite as Intermediates in the Solution-Based Crystallization of CaCO3 . In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_5

Download citation

Publish with us

Policies and ethics