Skip to main content

A Lower Bound for Computing Lagrange’s Real Root Bound

  • Conference paper
  • First Online:
Book cover Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

  • 765 Accesses

Abstract

In this paper, we study a bound on the real roots of a polynomial by Lagrange. From known results in the literature, it follows that Lagrange’s bound is also a bound on the absolute positiveness of a polynomial. A simple \(O(n\log n)\) algorithm described in Mehlhorn-Ray (2010) can be used to compute the bound. Our main result is that this is optimal in the real RAM model. Our paper explores the tradeoff between improving the quality of bounds on absolute positiveness and their computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akritas, A.G., Strzeboński, A., Vigklas, P.: Implementations of a new theorem for computing bounds for positive roots of polynomials. Computing 78, 355–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akritas, A.: Vincent’s theorem in algebraic manipulation. Ph.D. thesis, Operations Research Program, North Carolina State University, Raleigh, North Carolina (1978)

    Google Scholar 

  3. Batra, Prashant: On the quality of some root-bounds. In: Kotsireas, Ilias S., Rump, Siegfried M., Yap, Chee K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 591–595. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32859-1_50

    Chapter  Google Scholar 

  4. Batra, P., Sharma, V.: Bounds on absolute positiveness of multivariate polynomials. J. Symb. Comput. 45(6), 617–628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Collins, G.E.: Krandick’s proof of Lagrange’s real root bound claim. J. Symb. Comput. 70(C), 106–111 (2015). http://dx.doi.org/10.1016/j.jsc.2014.09.038

    Article  MATH  Google Scholar 

  6. Hong, H.: Bounds for absolute positiveness of multivariate polynomials. J. Symb. Comput. 25(5), 571–585 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kioustelidis, J.: Bounds for the positive roots of polynomials. J. Comput. Appl. Math. 16, 241–244 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lagrange, J.L.: Traité de la résolution des équations numériques de tous les degrés, Œuvres de Lagrange, vol. 8, 4th edn. Gauthier-Villars, Paris (1879)

    Google Scholar 

  9. Mehlhorn, K., Ray, S.: Faster algorithms for computing Hong’s bound on absolute positiveness. J. Symbol. Comput. 45(6), 677–683 (2010). http://www.sciencedirect.com/science/article/pii/S0747717110000301

    Article  MathSciNet  MATH  Google Scholar 

  10. Mignotte, M., Ştefănescu, D.: On an Estimation of Polynomial Roots by Lagrange. Prepublication de l’Institut de Recherche Mathématique Avancée, IRMA, Univ. de Louis Pasteur et C.N.R.S. (2002). https://books.google.co.in/books?id=NAd4NAEACAAJ

  11. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Book  MATH  Google Scholar 

  12. Sharma, V.: Complexity of real root isolation using continued fractions. Theor. Comput. Sci. 409(2), 292–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. van der Sluis, A.: Upper bounds for roots of polynomials. Numer. Math. 15, 250–262 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ştefănescu, D.: New bounds for the positive roots of polynomials. J. Univ. Comput. Sci. 11(12), 2132–2141 (2005)

    MathSciNet  Google Scholar 

  15. Ştefănescu, D.: A new polynomial bound and its efficiency. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 457–467. Springer, Switzerland (2015). http://dx.doi.org/10.1007/978-3-319-24021-3_33

    Google Scholar 

  16. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to express their gratitude to Dr. Prashant Batra and the referees for their invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Prabhakar, S.N., Sharma, V. (2016). A Lower Bound for Computing Lagrange’s Real Root Bound. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics