Skip to main content

Application of the Time-Fractional Diffusion Equation to Methyl Alcohol Mass Transfer in Silica

  • Conference paper
  • First Online:
Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 407))

Abstract

Non-usual behavior of methyl alcohol mass transfer in mesoporous silica is experimentally and theoretically investigated. Analysis of the experimental data in terms of the second Fick’s law and accounting of various pore geometries demonstrates no correspondence between the experimental data and theoretical solutions. We show that contrary to standard diffusion approach the experimental data are in an excellent coincidence with the solution of the time-fractional diffusion equation, obtained for boundary conditions that correspond to the experimental conditions. Obtained results reveal that methyl alcohol in mesoporous silica may exhibit anomalous features because of geometrical constraints of silica pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metzler, R., Klafter, J.: Boundary value problems for fractional differential equations. Phys. A 278, 107–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Frac. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Vlahos, L., Isliker, H., Kominis, Y., Hizanidis, K.: Normal and anomalous diffusion: a tutorial. Order Chaos 10, 1–40 (2008)

    Google Scholar 

  4. Ciesielski, M., Leszczynski, J.: Numerical simulations of anomalous diffusion. Comput. Methods Mech. (3–6), pp. 1–5 (2003)

    Google Scholar 

  5. O’Shaughnessy, B., Procaccia, I.: Diffusion on fractals. Phys. Rev. A 32(5), 3073–3083 (1985)

    Article  MathSciNet  Google Scholar 

  6. Płociniczak, ŁÂĄ: Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications. Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 169–183 (2015)

    Google Scholar 

  7. Chen, W., Sun, H., Zhang, X., Korosak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(5), 1754–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Paradisi, P., Cesari, R., Mainardi, F., Tampieri, F.: The fractional Fick’s law for non-local transport processes. Phys. A 293, 130–142 (2001)

    Article  MATH  Google Scholar 

  9. Zhang, H., Liu, F., Anh, V.: Numerical approximation of Levy-Feller diffusion equation and its probability interpretation. J. Comput. Appl. Math. 206, 1098–1115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rodriguez, R., Rojas, G., Estevez, M., Vargas, S.: Fractal characterization of silica sol prepared by the sol-gel method: From the sol formation to the flocculation process. J. Sol-Gel Sci. Technol. 23, 99–105 (2002)

    Article  Google Scholar 

  11. Hinic, I.: Behavior of fractal structure characteristics for neutral silica aero-gels during the sintering process. Phys. State Solid 144, 59–63 (1994)

    Article  Google Scholar 

  12. Sintes, T., Toral, R., Chakrabarti, A.: Fractal structure of silica colloids re-visited. J. Phys. A: Math. Gen. 29(3), 533–540 (1996)

    Article  MATH  Google Scholar 

  13. Martin J.E., Wilcoxon, J.: Fractal structure and fractal time in silica sol-gels, In: MRS Proceedings, vol. 180 (1990)

    Google Scholar 

  14. Li, C., Qian, D., Chen, Y., On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc. 15 (2011)

    Google Scholar 

  15. Han, B.: The time-space fractional diffusion equation with an absorption term. In: 2012 24th Chinese Control and Decision Conference, vol. 2, no. 3, pp. 1054–1056 (2012)

    Google Scholar 

  16. Huang, F., Liu, F.: The space-time fractional diffusion equation with Caputo derivatives. J. Appl. Math. Comput. 19(1), 179–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pagnini, G.: Short note on the emergence of fractional kinetics. Phys. A 409, 29–34 (2014)

    Article  MathSciNet  Google Scholar 

  18. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Atkinson, C., Osseiran, A.: Rational solutions for the time-fractional diffusion equation. SIAM J. Appl. Math. 71(1), 92–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mainardi, F., Pagnini, G.: The Wright functions as solutions of the time-fractional diffusion equation. Appl. Math. Comput. 141, 51–62 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Trewyn, B.G., Slowing, I.I., Giri, S., Chen, H., Lin, V.S.: Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 40, 846–853 (2007)

    Article  Google Scholar 

  22. Marrero, T.R., Mason, E.A.: Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data 1(1), 117 (1972)

    Article  Google Scholar 

  23. Katsanos, N.A.: Studies of diffusion and other rate processes by gas chromatography. Pure Appl. Chem. 65(10), 2245–2252 (1993)

    Article  Google Scholar 

  24. Khalid, K., Khan, R.A., Zain, S.M.: Analysis of diffusion coefficient using reversed-flow gas chromatography-a review. Am. J. Appl. Sci. 8(5), 428–435 (2011)

    Article  Google Scholar 

  25. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  27. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Su, N.: Mass-time and space-time fractional partial differential equations of water movement in soils: Theoretical framework and application to infiltration. J. Hydrol. 519, 1792–1803 (2014)

    Article  Google Scholar 

  29. Hapca, S., Crawford, J.W., Macmillan, K., Wilson, M.J., Young, I.M.: Modeling nematode movement using time-fractional dynamics. J. Theor. Biol. 248, 212–224 (2007)

    Article  MathSciNet  Google Scholar 

  30. Hilfer, R.: Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B 104(16), 3914–3917 (2000)

    Article  Google Scholar 

  31. Scalas, E., Gorenflo, R., Mainardi, F.: Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E 69, 011107 (2004)

    Article  MathSciNet  Google Scholar 

  32. Cruz, M.I., Stone, W.E.E., Fripiat, J.J.: The methanol-silica gel system. II. The molecular diffusion and proton exchange from pulse proton magnetic resonance data. J. Phys. Chem. 76(21), 3078–3088 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Zhokh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhokh, A.A., Trypolskyi, A.A., Strizhak, P.E. (2017). Application of the Time-Fractional Diffusion Equation to Methyl Alcohol Mass Transfer in Silica. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-45474-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45474-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45473-3

  • Online ISBN: 978-3-319-45474-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics