Skip to main content

Concentrated Solar Plants Management: Big Data and Neural Network

  • Chapter
  • First Online:
Renewable Energies

Abstract

Big Data is becoming the most powerful tool for analysing the huge amount of data around us. Cloud Processing is among the benefits offered by the Big Data, which allows analysis of data in real time from different parts of the world. These technological advances in mass data processing can be exploited to treat information from thousands of sensors. A new approach for optimal condition monitoring and control of Concentrating Solar Plants spread over different geographical locations is proposed. The information from the condition monitoring sensors (in this instance ultrasonic guided waves) and the data for the optimal control of the plants need a cloud platform in order to be analysed jointly with forecast data (meteorological, demand of other plants, etc.). The main processing tool used is based on neural networks, responsible for correlating the obtained signals in real time, to determine anomalous results and generate alarms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gómez Muñoz CQ, Villegas MA, García FP, Pedregal DJ (2015) Big data and web intelligence for condition monitoring: a case study on wind turbines. In: Handbook of research on trends and future directions in Big Data and web intelligence; information science reference, IGI Global, Hershey, PA, USA

    Google Scholar 

  2. Pinar JM, Gómez Muñoz CQ, Segura E, García Márquez FP (2014) A novel study of life cycle cost model of ice in blades condition monitoring systems for a wind turbine. In: The energy and environment knowledge week congress, Toledo, Spain, 30/10/204, 2014, Toledo, Spain

    Google Scholar 

  3. Pliego Marugán A, García Márquez F, Pinar Pérez J (2016) Optimal maintenance management of offshore wind farms. Energies 9:46

    Google Scholar 

  4. Gómez Muñoz CQ, García Márquez FP (2016) A new fault location approach for acoustic emission techniques in wind turbines. Energies 9:40

    Google Scholar 

  5. Gómez Muñoz CQ, García Marquez FP, Liang C, Maria K, Abbas M, Mayorkinos P (2015) A new condition monitoring approach for maintenance management in concentrate solar plants. In Proceedings of the ninth international conference on management science and engineering management. Springer, Berlin, pp 999–1008

    Google Scholar 

  6. Gómez Muñoz CQ, García Marquez FP, Arcos Jimenez A, Cheng L, Kogia M, Mohimi A, Papaelias M, Ruiz De la Hermosa Gonzalez-Carrato R (2015) Fault detection and diagnosis employing the electromagnetic sensors EMAT. In: The twelfth international conference on condition monitoring and machinery failure, prevention technologies, Oxford, UK, 11/06/2015, 2015; Oxford, UK

    Google Scholar 

  7. Marquez FPG (2006) An approach to remote condition monitoring systems management. In: The institution of engineering and technology international conference on railway condition monitoring. IET, pp 156–160

    Google Scholar 

  8. García Márquez FP, García‐Pardo IP (2010) Principal component analysis applied to filtered signals for maintenance management. Qual Reliab Eng Int 26:523–527

    Google Scholar 

  9. de la Hermosa González RR, Márquez FPG, Dimlaye V, Ruiz-Hernández D (2014) Pattern recognition by wavelet transforms using macro fibre composites transducers. Mech Syst Signal Process 48:339–350

    Google Scholar 

  10. de la Hermosa González RR, Márquez FPG, Dimlaye V (2015) Maintenance management of wind turbines structures via MFCS and wavelet transforms. Renew Sustain Energy Rev 48:472–482

    Google Scholar 

  11. Márquez FPG, Pérez JMP, Marugán AP, Papaelias M (2015) Identification of critical components of wind turbines using FTA over the time. Renew Energy

    Google Scholar 

  12. Márquez FPG, Pedregal DJ, Roberts C (2015) New methods for the condition monitoring of level crossings. Int J Syst Sci 46:878–884

    Article  Google Scholar 

  13. Márquez FPG, Muñoz JMC (2012) A pattern recognition and data analysis method for maintenance management. Int J Syst Sci 43:1014–1028

    Article  Google Scholar 

  14. Márquez FPG (2010) A new method for maintenance management employing principal component analysis. Struct Durability Health Monit 6:89–99

    Google Scholar 

  15. Papaelias M, Cheng L, Kogia M, Mohimi A, Kappatos V, Selcuk C, Constantinou L, Gómez Muñoz CQ, Marquez FPG, Gan T-H (2016) Inspection and structural health monitoring techniques for concentrated solar power plants. Renew Energy 85:1178–1191

    Google Scholar 

  16. Gómez Muñoz CQ, Ruiz De la Hermosa Gonzalez-Carrato R, Trapero Arenas JR, Garcia Marquez FP (2014) A novel approach to fault detection and diagnosis on wind turbines. Global Nest J 16:1029–1037

    Google Scholar 

  17. Gómez Muñoz CQ, Trapero Arenas JR, García Márquez FP (2014) Structural health monitoring for concentrated solar plants. In: 11th international conference on condition monitoring and machinery failure prevention technologies, Manchester, UK, 11/06/2014, 2014; Manchester, UK

    Google Scholar 

  18. Bacher P, Madsen H, Nielsen HA (2009) Online short-term solar power forecasting. Sol Energy 83:1772–1783

    Article  Google Scholar 

  19. Chen C, Duan S, Cai T, Liu B (2011) Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol Energy 85:2856–2870

    Article  Google Scholar 

  20. Chow CW, Urquhart B, Lave M, Dominguez A, Kleissl J, Shields J, Washom B (2011) Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol Energy 85:2881–2893

    Article  Google Scholar 

  21. Lara-Fanego V, Ruiz-Arias J, Pozo-Vázquez D, Santos-Alamillos F, Tovar-Pescador J (2012) Evaluation of the WRF model solar irradiance forecasts in andalusia (southern Spain). Sol Energy 86:2200–2217

    Article  Google Scholar 

  22. Martín L, Zarzalejo LF, Polo J, Navarro A, Marchante R, Cony M (2010) Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning. Sol Energy 84:1772–1781

    Article  Google Scholar 

  23. Mellit A (2008) Artificial intelligence technique for modelling and forecasting of solar radiation data: a review. Int J Artif Intell Soft Comput 1:52–76

    Article  Google Scholar 

  24. Mellit A, Pavan AM (2010) A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy 84:807–821

    Article  Google Scholar 

  25. Paoli C, Voyant C, Muselli M, Nivet M-L (2010) Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 84:2146–2160

    Article  Google Scholar 

  26. Pedro HT, Coimbra CF (2012) Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol Energy 86:2017–2028

    Article  Google Scholar 

  27. Picault D, Raison B, Bacha S, De La Casa J, Aguilera J (2010) Forecasting photovoltaic array power production subject to mismatch losses. Sol Energy 84:1301–1309

    Article  Google Scholar 

  28. Sfetsos A, Coonick A (2000) Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Sol Energy 68:169–178

    Article  Google Scholar 

  29. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533

    Article  Google Scholar 

  30. Kohonen T (1989) Self-organising and associative memory. Springer Series on Information Sciences (Springer)

    Google Scholar 

  31. Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480

    Article  Google Scholar 

  32. Kohonen T, Kaski S, Lagus K, Salojärvi J, Honkela J, Paatero V, Saarela A (2000) Self organization of a massive document collection. IEEE Trans Neural Netw 11:574–585

    Article  CAS  Google Scholar 

  33. Rumelhart DE, McClelland JL, Group PR (1988) Parallel distributed processing, vol 1. IEEE

    Google Scholar 

  34. Rubinstein RY, Kroese DP (2013) The cross-entropy method: a unified approach to combinatorial optimization, monte-carlo simulation and machine learning. Springer Science & Business Media

    Google Scholar 

  35. Prechelt L (1998) Automatic early stopping using cross validation: quantifying the criteria. Neural Netw 11:761–767

    Article  Google Scholar 

  36. Gómez Muñoz C, García Márquez F (2016) A new fault location approach for acoustic emission techniques in wind turbines. Energies 9:40

    Google Scholar 

Download references

Acknowledgements

The work reported herewith has been financially supported by the Spanish Ministerio de Economía y Competitividad, under Research Grants DPI2015-67264-P and RTC-2016-5694-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Pedro García Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arcos Jiménez, A., Gómez, C.Q., García Márquez, F.P. (2018). Concentrated Solar Plants Management: Big Data and Neural Network. In: García Márquez, F., Karyotakis, A., Papaelias, M. (eds) Renewable Energies. Springer, Cham. https://doi.org/10.1007/978-3-319-45364-4_5

Download citation

Publish with us

Policies and ethics