Skip to main content

Synergies Between Pulsatile Flow and Spacer Filaments in Reverse Osmosis Modules

  • Chapter
  • First Online:
Membranes

Abstract

This work uses 2D fluid dynamics and mass transfer simulations to evaluate the use of pulsatile flow in spiral wound reverse osmosis modules. The aim of pulsatile flow is to enhance mass transfer and increase the performance of the membrane modules, without significantly affecting pressure drop and energy losses. The synergies that exist between pulsatile flow and spacer filament-induced oscillations are explored. The results indicate that there is an optimal frequency that amplifies the perturbations. Flow pulsations at the optimal frequency (which is related to the natural oscillating frequency of the channel) cause vortex shedding at Reynolds numbers below 350, compared to values above 500 that would be necessary without pulsatile flow. This leads to an increase in mass transfer and permeate flux of the order of 12 % at those conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WWAP. (2012). The United Nations World Water Development Report 4: Managing water under uncertainty and risk. World Water Assessment Programme. Paris: UNESCO.

    Google Scholar 

  2. Neal, P. R., Li, H., Fane, A. G., & Wiley, D. E. (2003). The effect of filament orientation on critical flux and particle deposition in spacer-filled channels. Journal of Membrane Science, 214, 165–178.

    Article  Google Scholar 

  3. Schwinge, J., Neal, P. R., Wiley, D. E., Fletcher, D. F., & Fane, A. G. (2004). Spiral wound modules and spacers: Review and analysis. Journal of Membrane Science, 242, 129–153.

    Article  Google Scholar 

  4. Fimbres-Weihs, G. A., Wiley, D. E., & Fletcher, D. F. (2006). Unsteady flows with mass transfer in narrow zigzag spacer-filled channels: A numerical study. Industrial & Engineering Chemistry Research, 45, 6594–6603.

    Article  Google Scholar 

  5. Flemming, H.-C. (1997). Reverse osmosis membrane biofouling. Experimental Thermal and Fluid Science, 14, 382–391.

    Article  Google Scholar 

  6. Picioreanu, C., Vrouwenvelder, J. S., & van Loosdrecht, M. C. M. (2009). Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. Journal of Membrane Science, 345, 340–354.

    Article  Google Scholar 

  7. Keir, G., & Jegatheesan, V. (2014). A review of computational fluid dynamics applications in pressure-driven membrane filtration. Reviews in Environmental Science and Biotechnology, 13, 183–201.

    Article  Google Scholar 

  8. Fimbres-Weihs, G. A., & Wiley, D. E. (2010). Review of 3D CFD modelling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chemical Engineering and Processing: Process Intensification, 49, 759–781.

    Article  Google Scholar 

  9. Schwinge, J., Wiley, D., & Fletcher, D. F. (2002). Simulation of the flow around spacer filaments between channel walls. 2. Mass-transfer enhancement. Industrial & Engineering Chemistry Research, 41, 4879–4888.

    Article  Google Scholar 

  10. Fane, A. G., Wang, R., & Hu, M. X. (2015). Synthetic membranes for water purification: Status and future. Angewandte Chemie, International Edition, 54, 3368–3386.

    Article  Google Scholar 

  11. Li, H., Fane, A. G., Coster, H. G. L., & Vigneswaran, S. (1998). Direct observation of particle deposition on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 149, 83–97.

    Article  Google Scholar 

  12. Nishimura, T., & Matsune, S. (1998). Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile flow at low Reynolds numbers. International Journal of Heat and Fluid Flow, 19, 583–593.

    Article  Google Scholar 

  13. Alexiadis, A., Bao, J., Fletcher, D. F., Wiley, D. E., & Clements, D. J. (2005). Analysis of the dynamic response of a reverse osmosis membrane to time-dependent transmembrane pressure variation. Industrial & Engineering Chemistry Research, 44, 7823–7834.

    Article  Google Scholar 

  14. Jalilvand, Z., Ashtiani, F. Z., Fouladitajar, A., & Rezaei, H. (2014). Computational fluid dynamics modeling and experimental study of continuous and pulsatile flow in flat sheet microfiltration membranes. Journal of Membrane Science, 450, 207–214.

    Article  Google Scholar 

  15. Rodrigues, C., Rodrigues, M., Semiao, V., & Geraldes, V. (2015). Enhancement of mass transfer in spacer-filled channels under laminar regime by pulsatile flow. Chemical Engineering Science, 123, 536–541.

    Article  Google Scholar 

  16. Zamani, F., Chew, J. W., Akhondi, E., Krantz, W. B., & Fane, A. G. (2015). Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: A review. Desalination, 356, 328–348.

    Article  Google Scholar 

  17. Liang, Y. Y., Fimbres Weihs, G. A., Wiley, D. E. (2014). CFD Modelling of electro-osmotic mass transfer enhancement in spacer-filled membrane channels. In The 10th International Congress on Membranes and Membrane Processes (ICOM 2014), Suzhou, China.

    Google Scholar 

  18. Fimbres Weihs, G. A., & Wiley, D. E. (2014). CFD analysis of tracer response technique under cake-enhanced osmotic pressure. Journal of Membrane Science, 449, 38–49.

    Article  Google Scholar 

  19. Wiley, D., & Fletcher, D. F. (2003). Techniques for computational fluid dynamics modelling of flow in membrane channels. Journal of Membrane Science, 211, 127–137.

    Article  Google Scholar 

  20. Fletcher, D. F., & Wiley, D. (2004). A computational fluids dynamics study of buoyancy effects in reverse osmosis. Journal of Membrane Science, 245, 175–181.

    Article  Google Scholar 

  21. Koutsou, C. P., Yiantsios, S. G., & Karabelas, A. J. (2007). Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics. Journal of Membrane Science, 291, 53–69.

    Article  Google Scholar 

  22. Alexiadis, A., Wiley, D. E., Fletcher, D. F., & Bao, J. (2007). Laminar flow transitions in a 2D channel with circular spacers. Industrial & Engineering Chemistry Research, 46, 5387–5396.

    Article  Google Scholar 

  23. Law, V. J., & Bailey, R. V. (1963). A method for the determination of approximate system transfer functions. Chemical Engineering Science, 18, 189–202.

    Article  Google Scholar 

  24. Doebelin, E. O. (1980). System modeling and response: Theoretical and experimental approaches. New York: Wiley.

    Google Scholar 

  25. Fimbres-Weihs, G. A., & Wiley, D. E. (2007). Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow. Journal of Membrane Science, 306, 228–243.

    Article  Google Scholar 

  26. Schwinge, J., Wiley, D., & Fletcher, D. F. (2002). Simulation of the flow around spacer filaments between channel walls. 1. Hydrodynamics. Industrial & Engineering Chemistry Research, 41, 2977–2987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Adolfo Fimbres-Weihs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fimbres-Weihs, G.A., Álvarez-Sánchez, J. (2017). Synergies Between Pulsatile Flow and Spacer Filaments in Reverse Osmosis Modules. In: Maciel-Cerda, A. (eds) Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-45315-6_8

Download citation

Publish with us

Policies and ethics