Skip to main content

Osteoporosis in Patients with Peripheral Neuropathies

  • Chapter
  • First Online:
Osteoporosis Rehabilitation

Abstract

Peripheral neuropathy affects three types of nerves: sensory (impulses moving from the muscles to the spinal cord and the brain), motor (impulses moving from the brain and spinal cord to the rest of the body), and autonomic (nerves that control involuntary or semi-voluntary function such as heart rate, blood pressure, and digestion). Acquired, as opposed to hereditary neuropathy, has a number of causal factors including systemic diseases, medications and toxins, trauma, infections, autoimmune disorders, and vitamin imbalances. Its symptoms include numbness and tingling in the hands and feet, severe pain or the inability to feel pain at all, loss of coordination and reflexes, and muscle weakness. Functional challenges along with sensory and motor deficits contribute to falls in patients with a variety of peripheral neuropathies.

Many of these patients may, in addition, have compromised bone due to many years of immobility and medications that impair bone preservation. Diabetes, the primary cause of peripheral neuropathy, will be considered in this chapter together with critical illness polymyopathy and its association with immobility and medications as well as two autoimmune disorders: Guillain–Barre syndrome and inflammatory demyelinating polyradiculoneuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Institute of Diabetes and Digestive and Kidney Diseases. Diabetic neuropathies: the nerve damage of diabetes. U.S. Department of Health and Human Services, National Institutes of Health, 2013. http://www.niddk.nih.gov/health-information/health-topics/Diabetes/diabetic-neuropathies-nerve-damage-diabetes/Pages/diabetic-neuropathies-nerve-damage.aspx. Accessed 5 Dec 2015.

  2. National Institute of Neurological Disorders and Stroke. Peripheral neuropathy fact sheet. 2016. http://www.ninds.nih.gov/disorders/peripheralneuropathy/detail_peripheralneuropathy.htm. Accessed 15 Jan 2016.

  3. Cleveland Clinic. Diseases and conditions: neuropathy. http://my.clevelandclinic.org/services/neurological_institute_neuromuscular-center/diseases-conditions/peripheral-neuropathies. Accessed 15 Jan 2016.

  4. International Diabetes Foundation. IDF Diabetes Atlas. Brussels, Belgium. http://www.idf.org/sites/default/files/Atlas-poster-2014_EN.pdf. Accessed 5 Dec 2015.

  5. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metrics. 2010. doi:10.1186/1478-7954-8-29.

    Google Scholar 

  6. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;156(87):539–53.

    Article  Google Scholar 

  7. Center for Disease Control and Prevention. National diabetes statistics report. 2014. http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf. Accessed 5 Dec 2015.

  8. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90. doi:10.1016/S0140-6736(12)60283-9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boulton AJM, Vinik AI, Arezzo JC, Brit V, Feldman EL, Freeman R. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  10. Tesfaye S, Boulton AJM, Dickerson AH. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care. 2013;36(9):2456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leidig-Bruchner G, Ziegler R. Diabetes mellitus a risk for osteoporosis? Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S493–514.

    Article  Google Scholar 

  12. Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes. 2011;2:41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18(4):427–44.

    Article  CAS  PubMed  Google Scholar 

  14. Rakel A, Sheehy O, Rahme E, LeLorier J. Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab. 2007;34:193–205. doi:10.1016/j.diabet.2007.10.008.

    Article  Google Scholar 

  15. Ingberg CM, Palmer M, Aman J, Arvidsson B, Schvarez E, Berne C. Body composition and bone mineral density in long-standing type 1 diabetes. J Intern Med. 2004;255(3):392–8.

    Article  PubMed  Google Scholar 

  16. Kemink SA, Hermus AR, Swinkels LM, Lutterman JA. Smais. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest. 2000;23(5):295–303.

    Article  CAS  PubMed  Google Scholar 

  17. Thrailkill KM, Lumpkin CK, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289(5):E735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campos Pastor MM, Lopez-Ibarra PJ, Escobar-Imenez F, Serrano Pardo MD, Garcia-Cervigon AG. Intensive insulin therapy and bone mineral intensity in Type 1 diabetes mellitus: a prospective study. Osteoporos Int. 2000;11(5):455–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hofbauer LC, Brueck CC, Singh SK, Dibnig H. Review: osteoporosis in patients with diabetes mellitus. J Bone Mineral Res. 2007;22(9):1317–28.

    Article  CAS  Google Scholar 

  20. Horcajada-Molteni MN, Chanteranne B, Lebecque P, Davicco MJ, Young A, Barlet JP. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res. 2001;16(5):958–65.

    Article  CAS  PubMed  Google Scholar 

  21. Clowes JA, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res. 2005;20(9):1497–506.

    Article  CAS  PubMed  Google Scholar 

  22. Hamilton EJ, Rakic V, Davis WA, Chubb SA, Kamber N, Prince RL, et al. Prevalence and predictors of osteopenia and osteoporosis in adults with type 1 diabetes. Diabet Med. 2009;26:45–52. doi:10.1111/j.1464-5491.2008.02608.x.

    Article  CAS  PubMed  Google Scholar 

  23. Lumachi F, Camozzi V, Tombolan V, Luisetto G. Bone mineral density, osteocalcin, and bone-specific alkaline phosphatase in patients with insulin-dependent diabetes mellitus. Ann N Y Acad Sci. 2009;1173 Suppl 1:E64–7. doi:10.1111/j.1749-6632.2009.04955.x.

    Article  CAS  PubMed  Google Scholar 

  24. Rozadilla A, Nolla JM, Montana E, Fiter J, Gomez-Vaquero C, Soler J. Bone mineral density in patients with type 1 diabetes mellitus. Joint Bone Spine. 2000;67:215–8.

    CAS  PubMed  Google Scholar 

  25. Munoz-Torres M, Jodar E, Escobar-Jimenez F, Lopez-Ibarra PJ, Luna JD. Bone mineral density measured by dual X-ray absorptiometry in Spanish patients with insulin-dependent diabetes mellitus. Calcif Tissue Int. 1996;58:316–9.

    Article  CAS  PubMed  Google Scholar 

  26. Tuominen JT, Impivaara O, Puukka P, Ronnemaa T. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care. 1999;22:1196–200.

    Article  CAS  PubMed  Google Scholar 

  27. Vashishth D, Gilson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrue DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  28. Rix M, Andreassen H, Eskildsen P. Impact of peripheral neuropathy on bone density in patients with type I diabetes. Diabetes Care. 1999;22(5):827–31.

    Article  CAS  PubMed  Google Scholar 

  29. Barwick AL, de Jonge XAKJ, Tessier JW, Ho A, Chuter VH. The effect of diabetic neuropathy on foot bones: a systematic review and meta-analysis. Diabet Med. 2014;31(2):136–47.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas T, Gori, Spelsberg TC, Khosla S, Riggs BL, Conover CA. Response of bipotential human marrow stromal cells to insulin-like growth factors: effect of binding protein production, proliferation, and commitment to osteoblasts and adipocytes. Endocrinology. 1999;140(11):5036–44.

    Article  CAS  Google Scholar 

  31. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, et al. Leptin inhibits osteoclast generation. J Bone Miner Res. 2002;17(2):200–9.

    Article  CAS  PubMed  Google Scholar 

  32. Martin A, David V, Malaval L, Lafarge-Proust MH, Vico L, Thomas T. Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor –1 pathway. Endocrinology. 2007;148(7):3419–25.

    Article  CAS  PubMed  Google Scholar 

  33. Khosla S. Leptin—central or peripheral to the regulation of bone metabolism. Endocrinology. 2002;143(11):4161–4.

    Article  CAS  PubMed  Google Scholar 

  34. Kanazawa I. Adiponectin in metabolic bone disease. Curr Med Chem. 2012;19(32):5481–92.

    Article  CAS  PubMed  Google Scholar 

  35. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(6):939–49.

    Article  CAS  PubMed  Google Scholar 

  36. Imagawa A, Funahashi T, Nakamura T, Moriwaki M, Tanaka S, Nishizawa K, et al. Elevated serum concentration of adipose-derived factors, adiponectin, in patients with type 1 diabetes. Diabetes Care. 2002;25(9):1665–6.

    Article  PubMed  Google Scholar 

  37. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380(1–2):24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects again myocardial ischemia-reperfusion injury through AMPK-and COX-2-dependent mechanisms. Nat Med. 2005;11(10):1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shanbhogue VV, Hansen S, Frost M, Jorgensen NR, Hermann AP, Henriksen JE. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J Bone Miner Res. 2015;30(12):2188–99.

    Article  CAS  PubMed  Google Scholar 

  40. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7):1192–7.

    Article  CAS  PubMed  Google Scholar 

  41. Miao J, Brossard K, Noreen O, Ugarph-Morawski A, Ye W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care. 2005;28(12):2850–5.

    Article  PubMed  Google Scholar 

  42. Janghorbani M, Feskanich D, Willett WC, Hu F. Prospective study of diabetes and risk of hip fractures: the Nurses’ Health Study. Diabetes Care. 2006;29(7):1573–8.

    Article  PubMed  Google Scholar 

  43. Weber DR, Haynes K, Leonard MR, Willi SM, Denburg MR. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using the Health Improvement Network (THIN). Diabetes Care. 2015;38(120):19113–20.

    Google Scholar 

  44. Schwartz AV, Selimeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  45. International Osteoporosis Foundation. IOF urges early evaluation of fracture risk in diabetes. 2015. http://www.iofbonehealth.org/news/iof-urges-early-evaluation-fracture-risk-diabetes. Accessed 8 Feb 2016.

  46. Kaynak G, Birsel O, Guven MF, Ogut T. An overview of the Charcot foot pathophysiology. Diabet Foot Ankle. 2013. doi:10.3402/dfa.v410.2117.

    Google Scholar 

  47. Petrova NL, Shanahan CM. Neuropathy and the vascular-bone axis in diabetes: lessons from Charcot osteoarthropathy. Osteoporos Int. 2014;25(4):1197–207.

    Article  CAS  PubMed  Google Scholar 

  48. Gouveri E, Papanas N. Charcot osteoarthropathy in diabetes: a brief review with an emphasis on clinical practice. World J Diabetes. 2011;2(5):59–65.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Petrova NL, Edmonds ME. Acute Charcot neuro-osteoarthropathy. Diabetes Metab Res Rev. 2016;32(Suppl S1):281–6.

    Article  PubMed  Google Scholar 

  50. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone. 2016;82:93–100. doi:10.1016/jbone.2015.04.026.

    Article  CAS  PubMed  Google Scholar 

  51. Meier C, Kraenzlinm ME, Bodmer M, Jick SS, Jick H, Meier CR. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008;168(8):820–5.

    Article  CAS  PubMed  Google Scholar 

  52. Lecka-Czernik B. Safety of anti-diabetic therapies on bone. Clin Rev Bone Miner Metab. 2013;11(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  53. U.S. Food and Drug Administration. FDA drug safety communication: FDA revises label of diabetes drug canagliflozin (invokana, invokamet) to include updates on bone fracture risk and new information on decreased bone mineral density. 2015. http://www.fda.gov/Drugs/DrugSafety/ucm461449. Accessed 2 Feb 2016.

  54. U.S. Food and Drug Administration. FDA drug safety communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood. 2015. http://www.fda.gov/Drugs/DrugSafety/ucm446845. Accessed 2 Feb 2016.

  55. Menon B, Harinarayan CV. The effect of anti-epileptic drug therapy on serum 25-hydroxyvitamin D and parameters of calcium and bone metabolism – a longitudinal study. Seizure. 2010;19(3):153–8.

    Article  PubMed  Google Scholar 

  56. Eisenberg E, River Y, Shifrin A, Krivoy N. Antiepileptic drugs in the treatment of neuropathic pain. Drugs. 2007;67(9):1265–89.

    Article  CAS  PubMed  Google Scholar 

  57. Ensrud KE, Blackwell T, Mangione CM, Bowman PJ, Bauer DC, Schwartz A, et al. Central nervous system-active medications and risk for fracture in older women. Arch Intern Med. 2003;163(8):949–57.

    Article  PubMed  Google Scholar 

  58. Brown SA, Sharpless JL. Osteoporosis: an under-appreciated complication of diabetes. Clin Diabetes. 2004;22(1):10–20.

    Article  Google Scholar 

  59. Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM, Srinivasan N. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. 2006;84(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  60. Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complicat. 2010;24(5):334–44.

    Article  PubMed  Google Scholar 

  61. Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti G, et al. Effects of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res. 2010;25(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  62. Novelle MG, Ali A, Dieguez C, Bernier M, de Cabo R. Metformin: a hopeful approach in the aging research. In: Olshansky SJ, Martin GM, Kirkland JL, editors. Aging: the longevity dividend. New York: Cold Spring Harbor Laboratory Press; 2016. p. 179–90.

    Google Scholar 

  63. Fronczek-Sokol J, Pytlik M. Effect of glimepiride on the skeletal system of ovariectomized and non-ovariectomized rats. Pharmacol Rep. 2014;66(3):412–7.

    Article  CAS  PubMed  Google Scholar 

  64. Maugeri D, Panebianco P, Rosso D, Calanna A, Speciale S, Santangelo A, et al. Alendronate reduced the daily consumption of insulin (DCI) in patients with senile type 1 diabetes and osteoporosis. Arch Gerontol Geriatr. 2002;34(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  65. Chan DC, Yang RS, Ho CH, Tsai YS, Wang JJ, Tsai KT. The use of alendronate is associated with decreased incidence of type 2 diabetes mellitus—a population-based cohort study in Taiwan. PLoS ONE. 2015;10(4), e0123279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Toulis KA, Nirantharakumar K, Ryan R, Marshall T, Hemming K. Bisphosphonates and glucose homeostasis: a population-based, retrospective cohort study. J Clin Endocrinol Metab. 2015;100:1933–40. doi:10.1210/jc.2014-3481.

    Article  CAS  PubMed  Google Scholar 

  67. Andersson B, Johannsson G, Holm G, Bengtsson BA, Sashegyi A, Pavo I, et al. Raloxifene does not affect insulin sensitivity or glycemic control in postmenopausal women with type 2 diabetes mellitus: a randomized clinical trial. J Clin Endocrinol Metab. 2002;87(1):122–8.

    Article  PubMed  Google Scholar 

  68. U.S. Food and Drug Administration. Changes to the indicated population for miacalcin (calcitonin-salmon). http://www.fda.Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm 388641.htm. Accessed 7 Feb 2016.

  69. Eli Lilly Company. Safety information and updates to prescribing information for Forteo. http://uspl.lilly.com/forteo/forteo.html#pi. Accessed 26 Feb 2016.

  70. Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, et al. Pharmacological repression of PPARÎł promotes osteogenesis. Nat Commun. 2015;6:7443. http://www.nature.com/ncomms/2015/150612/ncomms8443/full/ncoomms 8443./html. Accessed 7 Feb 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bolton CF, Bryan GY, Zochodne DW. The neurological complications of sepsis. Ann Neurol. 1993;33:94–100.

    Article  CAS  PubMed  Google Scholar 

  72. Zhou C, Wu L, Ni F, Ji W, Wu J, Zhang H. Critical illness polyneuropathy and myopathy; a systemic review. Neural Regen Res. 2014;9(1):101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lacomis D. Neuromuscular disorders in critically ill patients: review and update. J Clin Neuromuscul Dis. 2011;12(4):197–218.

    Article  PubMed  Google Scholar 

  74. Osias J, Manno E. Neuromuscular complications of critical illness. Crit Care Clin. 2014;30(4):785–94. doi:10.1016/j.ccc.2014.06.008.

    Article  PubMed  Google Scholar 

  75. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10(10):931–41.

    Article  PubMed  Google Scholar 

  76. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  77. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

    Article  PubMed  Google Scholar 

  78. Brunner R, Rinner W, Haberler C, Kitzberger R, Sycha T, Herkner H, et al. Early treatment with IgM-enriched intravenous immunoglobulin does not mitigate critical illness polyneuropathy and/or myopathy in patients with multiple organ failure and SIRS/sepsis: a prospective, randomized, placebo-controlled, double-blinded trial. Crit Care. 2013;17(5):R213.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Perme C, Chandrasekhar R. Early mobility and walking program for patients in intensive care units: creating a standard of care. Am J Crit Care. 2009;18(3):212–21.

    Article  PubMed  Google Scholar 

  80. Mehrholz J, Pohl M, Kugler J, Burridge J, Muckel S, Eisner B. Physical rehabilitation for critical illness myopathy and neuropathy. Cochrane Database Syst Rev. 2015;3, CD010942. doi:10.1002/14651858.CD010942.pub2.

    Google Scholar 

  81. Connolly B, Salisbury L, O’Neill B, Geneen L, Douiri A, Grocott MP, et al. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst Rev. 2015. doi:10.1002/14651858.CD008632.pub2.

    PubMed  Google Scholar 

  82. Adler J, Malone D. Early mobilization in the intensive care unit: a systematic review. Cardiopulm Phys Ther J. 2012;23(1):5–13.

    PubMed  PubMed Central  Google Scholar 

  83. Karatzanos E, Gerovasli V, Zervakis D, Tripodski ES, Apostoiou K, Vasileiadis I, et al. Electrical muscle stimulation: an effective form of exercise and early mobilization to preserve muscle strength in critically ill patients. Crit Care Res Pract. 2012. doi:10.1155/2012/432752.

    PubMed  PubMed Central  Google Scholar 

  84. Cheng CJ, Chou CH, Lin S. An unrecognized cause of recurrent hypercalcemia: immobilization. South Med J. 2006;99(4):371–4.

    Article  PubMed  Google Scholar 

  85. Gallacher SJ, Ralston SH, Dryburgh FJ, Logue FC, Allam BF, Boyce BF, et al. Immobilization-related hypercalcaemia—a possible novel mechanism and response to pamidronate. Postgrad Med J. 1990;66(781):918–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. De Beus E, Boer WH. Denosumab for treatment of immobilization-related hypercalcaemia in a patient with advanced renal failure. Clin Kidney J. 2012;5(6):566–71.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Booth KA, Hays CI. Using denosumab to treat immobilization hypercalcemia in a post-acute care patient. J Clin Endocrinol Metab. 2014;99(10):3531–5. doi:10.1210/js.2013-4205.

    Article  CAS  PubMed  Google Scholar 

  88. Thompson RN, Armstrong CL, Heyburn G. Bilateral atypical femoral fractures in a patient prescribed denosumab – a case report. Bone. 2014;61:44–7. doi:10.1016/j.bone2013.12.027.014.

    Article  PubMed  Google Scholar 

  89. Aspenberg P. Denosumab and atypical femoral fractures. Acta Orthop. 2014;85(1):1. doi:10.3109/17453674.2013.859423.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bone HG, Chapuriat R, Brandi ML, Brown JP, Czerwinski E, Krieg MA, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab. 2013;98:4483–92. doi:10.1210/jc.2013-1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tuukkanen J, Vaananen HK. Omeprazole, a specific inhibitor of H+K+ATPase inhibits bone resorption in vitro. Calcif Tissue Int. 1986;38(2):123–5.

    Article  CAS  PubMed  Google Scholar 

  92. Ito T, Jensen RT. Association of long-term proton pump inhibitor therapy with bone fractures and effects on absorption of calcium, vitamin B12, iron, and magnesium. Curr Gastroenterol Rep. 2010;12(6):448–57.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Marcinowska-Suchowierska EB, Talalaz MY, Wlodarcyzk AW, Bielecki K, Zawadzski JJ, Brzozzowski R. Calcium/phosphate/vitamin D homeostasis and bone mass in patients after gastrectomy, vagotomy, and cholecystectomy. World J Surg. 1995;19(4):597–601.

    Article  CAS  PubMed  Google Scholar 

  94. Hansen KE, Jones AN, Lindstrom MJ, Davis LA, Ziegler TE, Penniston KL, et al. Do proton pump inhibitors decrease calcium absorption? J Bone Miner Res. 2010;25(12):2786–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Targownik LE, Lix LM, Leung G, Leslie WD. Proton-pump inhibitor use is not associated with osteoporosis or accelerated bone mineral density loss. Gastroenterology. 2010;138(3):896–904.

    Article  CAS  PubMed  Google Scholar 

  96. Jung HK. Is there any association of osteoporosis with proton pump inhibitor use? (Gastroenterology 2010;138:896–904). J Neurogastroenterol Motil. 2010;16(3):35–6.

    Article  Google Scholar 

  97. Vestergaard P, Ejnmark L, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int. 2006;7(9):76–83.

    Article  CAS  Google Scholar 

  98. Yang YX, Lewis JD, Epstein S, Metz DC. Long-term proton-pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296(24):2947–53.

    Article  CAS  PubMed  Google Scholar 

  99. Gray SL, LaCroix AZ, Larson J, Robbins J, Cauley JA, Manson JAE. Proton pump inhibitor use, hip fracture, and change in bone mineral density in postmenopausal women: results from the Women’s Health Initiative. Arch Intern Med. 2010;170(9):765–71.

    Article  PubMed  PubMed Central  Google Scholar 

  100. FDA Drug Safety Communication: possible increased risk of fractures at the hip, wrist, and spine with the use of proton pump inhibitors. U.S. Food and Drug Administration. 2010–2011. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPat-ientsandProviders/ucm213206.htm. Accessed 12 Jan 2016.

  101. Heidelbaugh JJ. PPI therapy: when to worry about fracture risk. J Fam Pract. 2011;60(5):255–60.

    PubMed  Google Scholar 

  102. Targownik LE, Leslie WD, Davison KS, Goltzman D, Jamal SA, Kreiger N, et al. The relationship between proton pump inhibitor use and longitudinal change in bone mineral density: a population based [study] based [on] the Canadian Multicentre Osteoporosis Study (CaMos). Am J Gastroenterol. 2012;107:1361–9. 10/10038/ajg.2012.200.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Khalili H, Huang ES, Jacobson BC, Camargo Jr CA, Fiskanich D, Chan AT. Use of proton pump inhibitors and risk of hip fracture in relation to dietary and lifestyle factors: a prospective cohort study. BMD. 2012;344:e372. doi: http://dx.doi.org/10.1136/bmj.e372.

    Article  CAS  Google Scholar 

  104. Adams AL, Black MH, Zhang JL, Shi JM, Jacobsen SJ. Proton-pump inhibitor use and hip fractures in men: a population-based case-control study. Ann Epidemiol. 2014;24(4):286–98.

    Article  PubMed  Google Scholar 

  105. Freedberg DE, Haynes K, Denburg MR, Zemel BS, Leonard MB, Abrams KJA, et al. Use of proton pump inhibitors is associated with fractures in young adults: a population-based study. Osteoporos Int. 2015;26(10):2501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Leontiadis GI, Moayyedi P. Proton pump inhibitors and risk of bone fractures. Curr Treat Options Gastroenterol. 2014;12(4):414–23.

    Article  PubMed  Google Scholar 

  107. Johnson DA, Oldfield IV EC. Reported side effects and complications of long-term proton pump inhibitor use. Clin Gastroenterol Hepatol. 2013;11(5):458–64.

    Article  PubMed  Google Scholar 

  108. Shah NH, LePendu P, Bauer-Mehren A, Ghebremariam YT, Iyer SV, Marcus J, et al. Proton pump inhibitor usage and risk of myocardial infarction in the general population. PLoS ONE. 2015. 10.11371/journal.pone.0124653.

    Google Scholar 

  109. Rejnmark L, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L. Loop diuretics increase bone turnover and decrease BMD in osteopenic menopausal women, results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21(1):163–70.

    Article  CAS  PubMed  Google Scholar 

  110. Carbone LD, Johnson KC, Bush AJ, Robbins J, Larson J, Thomas A, et al. Loop diuretic use and fracture in postmenopausal women: findings from the Women’s Health Initiative. Arch Intern Med. 2009;169(2):132–40.

    Article  PubMed  Google Scholar 

  111. Bergman DA. Perspective. In: Prolonged use of loop diuretics, fracture risk in postmenopausal women. Endocrine Today. 2009. http://www.healio.com/endocrinology/bone-mineral-metabolism/news/print/endocrine-today. Accessed 10 Feb 2016.

  112. Lim LS, Fink HA, Blackwell T, Taylor BC, Ensud KE. Loop diuretics use and rates of hip bone loss, and risk of falls and fractures in older women. J Am Geriatr Soc. 2009;57(5):855–62.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Xiao F, Qu X, Zhai Z, Jiang C, Li H, Liu X, et al. Association between loop diuretic use and fracture risk. Osteoporos Int. 2015;26:775–84. doi:10.1007/s00198-014-2979-8.

    Article  CAS  PubMed  Google Scholar 

  114. Rajgopal R, Bear M, Butcher MK, Shaughnessy SG. The effects of heparin and low molecular weight heparins on bone. Thromb Res. 2008;122(3):293–8.

    Article  CAS  PubMed  Google Scholar 

  115. Pettila V, Kaaja R, Leinonen P, Ekblad U, Kataza M, Ikkala E. Thromboprophylaxis with low-molecular weight heparin in pregnancy. Thromb Res. 1999;96:275–82.

    Article  CAS  PubMed  Google Scholar 

  116. Monreal M, Lafoz E, Olive A, del Rio L, Vedia C. Comparison of subcutaneous unfractionated heparin with a low molecular weight heparin (Fragmin) in patients with venous thromboembolism and contraindications to coumadin. Thromb Haemost. 1994;71(1):7–11.

    CAS  PubMed  Google Scholar 

  117. John Hopkins Medicine. Guillain-barre and CIDP. http://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/peripheral_nerve/conditions/guillain_barre_and_cidp.html. Accessed 17 Jan 2016.

  118. Mathey EK, Park SB, Hughes RAC, Pollard JD, Armati PJ, Barnett MH, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry. 2014;86:973–85. doi:10.1136/jnnp-2014-309697.

    Article  Google Scholar 

  119. National Institute of Neurological Disorders and Stroke. NINDS chronic inflammatory demyelinating polyneuropathy (CIDP). http://www.ninds.nih.gov/disorders/cidp/cidp.html. Accessed 17 Jan 2016.

  120. National Institute of Neurological Disorders and Stroke. Guillain-barré syndrome fact sheet. http://www.ninds.nih.gov/disorders/gbs/detail_gbs.htm#3139_3. Accessed 17 Jan 2016.

  121. Center for Peripheral Neuropathy. Guillain-barré syndrome/acute demyelinating polyneuropathy.http://peripheralneuropathycenter.uchicago.edu/learnaboutpn/typesofpn/inflammatory/guillainbarre.shtml. Accessed 17 Jan 2016.

  122. van den Berg B, Waigaard C, Drenthen J, Fokke C, Jacobs BC, van Doorm P. Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10:469–82. doi:10.1038/nrneurol.2014.121.

    Article  PubMed  CAS  Google Scholar 

  123. Hughes RA, Swan AV, van Koningsveld R, van Doorn PA. Corticosteroids for Guillain-Barre syndrome. Cochrane Database Syst Rev. 2006;19(2), CD001446.

    Google Scholar 

  124. Inhibition of complement activation (Eculizumab) in Guillain-Barre Syndrome (ICA-GBS). National Health Service Great Glasgow and Clyde, University of Glasgow. 2014. https://clinicaltrials.gov/ct2/show/NCT02029378. Accessed 30 Oct 2015.

  125. Orsini M, de Freitas MRG, Presto B, Mello MP, Reis CHM, Silveira V, et al. Guideline for neuromuscular rehabilitation in Guillain-Barre Syndrome: what can we do? Rev Neurocience. 2010;18(4):572–80.

    Google Scholar 

  126. Eftimov F, Winer JB, Vermeulen M, de Haan R, van Schaik. Intravenous immunoglobin for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev. 2013;12, CD001797. doi:10.1002/14681858.CD001797.pub3.

    Google Scholar 

  127. Mehndiratta MM, Hughes RA, Agarwal P. Plasma exchange for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev. 2015;(8):CD003906. doi:10.1002/14651858.CD003906.pub4.

    Google Scholar 

  128. Gorson KC. An update on the management of chronic inflammatory demyelinating polyneuropathy. Ther Adv Neurol Disord. 2012;5(6):359–73.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mathey EK, Pollard JD. New treatment for chronic inflammatory demyelinating polyneuropathy. Eur Neurol Rev. 2013;8(1):51–6.

    Article  Google Scholar 

  130. Elf K, Ashmark H, Nygren I, Punga AR. Vitamin D deficiency in patients with primary immune-mediated peripheral neuropathies. J Neurol Sci. 2014;345(1–2):184–8.

    Article  CAS  PubMed  Google Scholar 

  131. Skversky AL, Jumar J, Abramowitz MK, Kaskel FJ, Melamed ML. Association of glucocorticoid use and low 25-hyroxyvitamin D levels: results from the National Health and Nutrition Examination Survey (NHANES): 2001–2006. J Clin Endocrinol Metab. 2011;96(12):3838–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Canalis E, Mazziotti G, Glustina A, Bilezikian JP. Glucocorticoid- induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.

    Article  CAS  PubMed  Google Scholar 

  133. Mazziotti G, Canalis E, Giustina A. Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med. 2010;123(10):877–84.

    Article  CAS  PubMed  Google Scholar 

  134. Van Staa TP, Laan RF, Barton JP, Cohen S, Reid DM, Cooper G. Bone density thresholds and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 2003;48(11):3224–9.

    Article  PubMed  CAS  Google Scholar 

  135. Amin S, Lavalley MP, Simms RW, Felson DT. The comparative efficacy of drug therapies used for the management of corticosteroid-induced osteoporosis: a meta-regression. J Bone Miner Res. 2002;17(8):1512–26.

    Article  CAS  PubMed  Google Scholar 

  136. Pouwels S, de Boer A, Leufkens HGM, Weber WEJ, Cooper C, van Staa TP, et al. Risk of fracture in patients with Guillain-Barre syndrome. Osteoporos Int. 2014;25(7):1845–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kupfer, M., Oleson, C.V. (2017). Osteoporosis in Patients with Peripheral Neuropathies. In: Osteoporosis Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-45084-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45084-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45082-7

  • Online ISBN: 978-3-319-45084-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics