Skip to main content

Interactions of Color Vision with Other Visual Modalities

  • Chapter
  • First Online:
Human Color Vision

Part of the book series: Springer Series in Vision Research ((SSVR,volume 5))

  • 2539 Accesses

Abstract

Color vision is not only good for seeing hues but for seeing other visual dimensions, or “modalities,” such as form, depth, material, and motion. The latter use of color vision relies in part on the exploitation of physical constraints that exist between the patterns of color and luminance in the natural visual world. Color vision on its own, however, that is, in the absence of luminance information, is in most cases less effective than luminance information for processing other modalities, often requiring more contrast relative to detection threshold to achieve commensurate levels of performance. Reasons for this are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To decompose the RGB camera image the image was first converted into the YUV color space, in which luminance information is represented in the Y layer and color information in the U and V layers. The luminance image was created by setting the U and V layers to zero then converting the YUV image back to RGB. The chromatic layer was created by setting the Y layer to 0.5 then converting the YUV image back to RGB. Note that the chromatic layer will not be isoluminant due to observer variability and the limitations of photographic reproduction.

References

  1. Merleau-Ponty M. Eye and mind. In: Kearney R, Rasmussen D, editors. Continental aesthetics. Oxford: Blackwell; 1964/2001. Trans. Carleton Dallery.

    Google Scholar 

  2. Chirimuuta M, Kingdom FAA. The uses of colour vision: ornamental, practical and theoretical. Mind Machines. 2015;25(2):213–29.

    Article  Google Scholar 

  3. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement and depth. J Neurosci. 1987;7(11):3416–68.

    CAS  PubMed  Google Scholar 

  4. Livingstone MS, Hubel DH. Segregation of form, color, movement and depth: anatomy, physiology and perception. Science. 1988;240:740–9.

    Article  CAS  PubMed  Google Scholar 

  5. McIlhagga WH, Mullen KT. The contribution of colour to contour detection”. In: Dickenson CM, Murray I, Carden D, editors. Colour vision research: proceedings of the John Dalton conference. London: Taylor & Francis; 1997. p. 187–97.

    Google Scholar 

  6. Gegenfurtner KR, Kiper DC. Color vision. Annu Rev Neurosci. 2003;26:181–206.

    Article  CAS  PubMed  Google Scholar 

  7. Heywood CA, Kentridge RW, Cowey A. From and motion from colour in cerebral achromatopsia. Exp Brain Res. 1998;123:145–53.

    Article  CAS  PubMed  Google Scholar 

  8. Cowey A, Alexander I, Heywood CA, Kentridge RW. Pupillary responses to coloured and contourless displays in total cerebral achromatopsia. Brain. 2008;131:2153–60.

    Article  PubMed  Google Scholar 

  9. Regan D. Human perception of objects. Massachussets: Sinauer Associates; 2000.

    Google Scholar 

  10. Shevell SK, Kingdom FAA. Color in complex scenes. Annu Rev Psychol. 2008;59:143–66.

    Article  PubMed  Google Scholar 

  11. Morgan MJ, Aiba TS. Positional acuity with chromatic stimuli. Vis Res. 1985;25:689–95.

    Article  CAS  PubMed  Google Scholar 

  12. Webster MA, DeValois KK, Switkes E. Orientation and spatial frequency discrimination for luminance and chromatic gratings. J Opt Soc Am A. 1990;7:1034–49.

    Article  CAS  PubMed  Google Scholar 

  13. Mullen KT, Boulton JC. Absence of smooth motion perception in color vision. Vis Res. 1992;32:483–8.

    Article  CAS  PubMed  Google Scholar 

  14. Simmons DR, Kingdom FAA. Contrast thresholds for stereoscopic depth identification with isoluminant and isochromatic stimuli. Vis Res. 1994;34:2971–82.

    Article  CAS  PubMed  Google Scholar 

  15. Kingdom FAA, Simmons DR, Rainville SJM. On the apparent collapse of stereopsis in random-dot-stereograms at isoluminance. Vis Res. 1999;39:2127–41.

    Article  CAS  PubMed  Google Scholar 

  16. Mullen KT, Beaudot WH. Comparison of color and luminance vision on a global shape discrimination task. Vis Res. 2002;42:565–75.

    Article  PubMed  Google Scholar 

  17. Kingdom FAA, Simmons DR. The relationship between colour vision and stereoscopic depth perception. J Soc 3D Broadcast Imag. 2000;1:10–9.

    Google Scholar 

  18. Solomon SG, Lennie P. The machinery of colour vision. Nat Rev Neurosci. 2007;8:276–86.

    Article  CAS  PubMed  Google Scholar 

  19. Parraga CA, Troscianko T, Tolhurst DJ. Spatio-chromatic properties of natural images and human vision. Curr Biol. 2002;12:483–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yoonessi A, Kingdom FAA, Alqawlaq S. Is color patchy? J Opt Soc Am A. 2008;25:1330–8.

    Article  Google Scholar 

  21. Johnson AP, Kingdom FAA, Baker Jr CL. Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure. J Opt Soc Am A. 2005;22:2050–9.

    Article  Google Scholar 

  22. Granger EM, Hurtley JC. Visual chromaticity-modulation transfer function. J Opt Soc Am A. 1973;63:1173–4.

    Article  CAS  Google Scholar 

  23. Mullen KT. The contrast sensitivity of human colour vision to red-green and blue-yellow gratings. J Physiol. 1985;359:381–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fine I, MacLeod DIA, Boynton GM. Surface segmentation based on the luminance and color statistics of natural scenes. J Opt Soc Am A. 2003;20:1283–91.

    Article  Google Scholar 

  25. Hansen T, Gegenfurtner KR. Independence of color and luminance edges in natural scenes. Vis Neurosci. 2009;26:35–49.

    Article  PubMed  Google Scholar 

  26. DeValois RL. Analysis and coding of color vision in the primate visual system. Cold Spring Harb Symp Quant Biol. 1965;30:567–79.

    Article  CAS  Google Scholar 

  27. Krauskopf J, Williams DR, Heeley DW. Cardinal directions of colour space. Vis Res. 1982;22:1123–31.

    Article  CAS  PubMed  Google Scholar 

  28. Derrington AM, Krauskopf J, Lennie P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol. 1984;357:241–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buchsbaum G, Gottschalk A. Trichromacy, opponent colour coding and optimum colour information transmission in the retina Proc. R Soc Lond B Biol Sci. 1983;220:89–113.

    Article  CAS  Google Scholar 

  30. Zaidi Q. Decorrelation of L- and M-cone signals. J Opt Soc Am A. 1997;14:3420–31.

    Google Scholar 

  31. Ruderman DL, Cronin TW, Chiao C-C. Statistics of cone responses to natural images: implications for visual coding. J Opt Soc Am A. 1998;15:2036–45.

    Article  Google Scholar 

  32. Lee T-W, Wachtler T, Sejnowski TJ. Color opponency is an efficient representation of spectral properties in natural scenes. Vis Res. 2002;42:2095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mollon JD. “Tho’ she kneel'd in that place where they grew…”: the uses and origins of primate color vision. J Exp Biol. 1989;146:21–38.

    CAS  PubMed  Google Scholar 

  34. Mollon JD. Cherries among the leaves: the evolutionary origins of color vision. In: David S, editor. Color perception: philosophical, psychological, artistic and computational perspectives. New York: Oxford University Press; 2000. p. 10–30.

    Google Scholar 

  35. Kingdom FAA, Bell J, Gheorghiu E, Malkoc G. Chromatic variations suppress suprathreshold brightness variations. J Vis. 2010;10(10):13:1–13.

    Article  Google Scholar 

  36. Morgan MJ, Adam A, Mollon JD. Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc R Soc Lond B Biol. 1992;248:291–5.

    Article  CAS  Google Scholar 

  37. Pearson PM, Kingdom FAA. On the interference of task-irrelevant hue variation on texture segmentation. Perception. 2001;30:559–69.

    Article  CAS  PubMed  Google Scholar 

  38. Moulden B, Kingdom F, Wink B. Colour pools, brightness pools, assimilation, and the spatial resolving power of the human colour-vision system. Perception. 1993;22:343–51.

    Article  CAS  PubMed  Google Scholar 

  39. Wuerger SM, Owens H, Westland S. Blur tolerance for luminance and chromatic stimuli. J Opt Soc Am A. 2001;18:1231–9.

    Article  CAS  Google Scholar 

  40. Webster MA, Mizokami Y, Svec LA, Elliott SL. Neural adjustments to chromatic blur. Spat Vis. 2006;19:111–32.

    Article  PubMed  Google Scholar 

  41. Wandell BA. Foundations of vision. Sunderland, MA: Sinauer; 1995.

    Google Scholar 

  42. Sharman RJ, McGraw PV, Peirce JW. Luminance cues constrain chromatic blur discrimination in natural scene stimuli. J Vis. 2013;13(4):14.

    Article  PubMed  Google Scholar 

  43. Boynton RM. Ten years of research with the minimally distinct border. In: Armington JC, Krauskopf J, Wooten BR, editors. Visual psychophysics and physiology. New York: Academic; 1978. p. 193–207.

    Chapter  Google Scholar 

  44. Mollon J. Seeing Color. In: Lamb T, Bourriau J, editors. Colour, art and science (Ch 5). Cambridge, UK: Cambridge University Press; 1995.

    Google Scholar 

  45. Pinna B, Brelstaff G, Spillmann L. Surface color from boundaries: a new ‘watercolor’ illusion. Vis Res. 2001;41:2669–76.

    Article  CAS  PubMed  Google Scholar 

  46. Kingdom FAA, Bell J, Haddad C, Bartsch A. Perceptual scales for chromatic and luminance blur in noise textures. J Vis. 2015;15(9):6,1–10.

    Article  Google Scholar 

  47. Krauskopf J, Forte JD. Influence of chromaticity on vernier and stereo acuity. J Vis. 2002;2:645–52.

    Article  PubMed  Google Scholar 

  48. Clifford CW, Spehar B, Solomon SG, Martin PR, Zaidi Q. Interactions between color and luminance in the perception of orientation. J Vis. 2003;3:106–15.

    Article  PubMed  Google Scholar 

  49. Beaudot WH, Mullen KT. Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise. Vis Res. 2005;45:687–96.

    Article  PubMed  Google Scholar 

  50. McIlhagga WH, Mullen KT. Contour integration with color and luminance contrast. Vis Res. 1996;36:1265–79.

    Article  CAS  PubMed  Google Scholar 

  51. Mullen KT, Beaudot WH, McIlhagga WH. Contour integration in color vision: a common process for the blue-yellow, red-green and luminance mechanisms ? Vis Res. 2000;40:639–55.

    Article  CAS  PubMed  Google Scholar 

  52. Gheorghiu E, Kingdom FA. Chromatic tuning of contour-shape mechanisms revealed through the shape-frequency and shape-amplitude after-effects. Vis Res. 2007;47(14):1935–49.

    Article  PubMed  Google Scholar 

  53. McIlhagga W, Hine T, Cole GR, Snyder AW. Texture segregation with luminance and chromatic contrast. Vis Res. 1990;30:489–95.

    Article  CAS  PubMed  Google Scholar 

  54. Pearson PM, Kingdom FAA. Texture-orientation mechanisms pool colour and luminance. Vis Res. 2002;42:1547–58.

    Article  CAS  PubMed  Google Scholar 

  55. Cardinal KS, Kiper DC. The detection of colored glass patterns. J Vis. 2003;3:199–208.

    Article  PubMed  Google Scholar 

  56. Troscianko T, Montagnon R, Le Clerc J, Malbert E, Chanteau PL. The role of colour as a monocular depth cue. Vis Res. 1991;31:1923–9.

    Article  CAS  PubMed  Google Scholar 

  57. Zaidi Q, Li A. Three-dimensional shape from chromatic orientation flows. Vis Neurosci. 2006;23(3-4):323–30.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu C-C, Chen C-C. The symmetry detection mechanisms are color selective. Sci Rep. 2014;4:3893. doi:10.1038/srep03893.

    PubMed  PubMed Central  Google Scholar 

  59. Morales D, Pashler H. Attention and perception of color symmetry. Nature. 1999;399(6732):115–6.

    Article  CAS  PubMed  Google Scholar 

  60. Gheorghiu E, Kingdom FAA, Remkes A, Li HC-O, Rainville S. The role of color and attention-to-color in mirror-symmetry perception. Sci Rep. 2016;6:29287, doi:10.1038/srep29287.

  61. Rubin JM, Richards WA. Color vision and image intensities: when are changes material? Biol Cybern. 1982;45:215–26.

    Article  CAS  PubMed  Google Scholar 

  62. Kingdom FAA, Beauce C, Hunter L. Colour vision brings clarity to shadows. Perception. 2004;33:907–14.

    Article  PubMed  Google Scholar 

  63. Osorio D, Vorobyev M. Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proc R Soc Lond B. 2005;272:1745–52.

    Article  CAS  Google Scholar 

  64. Sacks O. An anthropologist on Mars. London: Picador; 1995.

    Google Scholar 

  65. Kingdom FAA. Colour brings relief to human vision. Nat Neurosci. 2003;6:641–4.

    Article  CAS  PubMed  Google Scholar 

  66. Kingdom FAA. Illusions of colour and shadow. In: Biggam CP, Hough C, Kay CJ, Simmons DR, editors. New directions in colour studies. Amsterdam, The Netherlands: John Benjamins; 2011.

    Google Scholar 

  67. Kingdom FAA. Perceiving light versus material. Vis Res. 2008;48:2090–105.

    Article  PubMed  Google Scholar 

  68. Kanizsa G. Organization in vision. New York: Praeger; 1979.

    Google Scholar 

  69. Adelson EH. Perceptual organization and the judgement of brightness. Science. 1993;262:2042–4.

    Article  CAS  PubMed  Google Scholar 

  70. Ripamonti C, Westland S. Prediction of transparency perception based on cone– excitation ratios. J Opt Soc Am A. 2003;20:1673–80.

    Article  Google Scholar 

  71. D’Zmura M, Colantoni P, Knoblauch K, Laget B. Color transparency. Perception. 1997;26:471–92.

    Article  PubMed  Google Scholar 

  72. Khang B-G, Zaidi Q. Accuracy of color scission for spectral transparencies. J Vis. 2002;2:451–66.

    Article  PubMed  Google Scholar 

  73. Fulvio JM, Singh M, Maloney LT. Combining achromatic and chromatic cues to transparency. J Vis. 2006;6:760–76.

    Article  PubMed  Google Scholar 

  74. Kingdom FAA, Kasrai R. Colour unmasks dark targets in complex displays. Vis Res. 2006;46:814–22.

    Article  PubMed  Google Scholar 

  75. Anderson BL. A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions. Perception. 1997;26:419–53.

    Article  CAS  PubMed  Google Scholar 

  76. van Tujil HFJM. A new visual illusion: neonlike color spreading and complementary color induction between subjective contours. Acta Psychol. 1975;39:441–5.

    Article  Google Scholar 

  77. Bloj MG, Kersten D, Hurlbert AC. Perception of three-dimensional shape influences colour perception through mutual illumination. Nature. 1999;402:877–9.

    CAS  PubMed  Google Scholar 

  78. Jennings BJ, Wang K, Menzies S, Kingdom FAA. Detection of chromatic and luminance distortions in natural scenes. J Opt Soc Am A. 2015;32(9):1613–22.

    Article  Google Scholar 

  79. Hecht E. Optics. 4th ed. London, UK: Addison-Wesley; 2001.

    Google Scholar 

  80. Kingdom FAA, Field DJ, Olmos A. Does spatial invariance result from insensitivity to change? J Vis. 2007;7(14):11:1–13.

    Google Scholar 

  81. Bex PJ. (In) sensitivity to spatial distortion in natural scenes. J Vis. 2010;10(2):23.1–15.

    Article  Google Scholar 

  82. Mandelstam LI. Light scattering by inhomogeneous media. Zh Russ Fiz-Khim Ova. 1926;58:381.

    Google Scholar 

  83. Kerker K. The scattering of light and other electromagnetic radiation. New York: Academic; 1969.

    Google Scholar 

  84. Julesz B. Foundations of cyclopean perception. Chicago: University of Chicago Press; 1971.

    Google Scholar 

  85. Howard IP, Rogers BJ. Seeing in depth. 1, 2nd ed. Toronto, ON: Porteous; 2002.

    Google Scholar 

  86. Gregory RL. Vision with isoluminant colour contrast: 1. A projection technique and observations. Perception. 1977;6:113–9.

    Article  CAS  PubMed  Google Scholar 

  87. de Weert CMM. Colour contours and stereopsis. Vis Res. 1979;19:555–64.

    Article  PubMed  Google Scholar 

  88. Livingstone MS. Differences between stereopsis, interocular correlation, and binocularity. Vis Res. 1996;36:1127–40.

    Article  CAS  PubMed  Google Scholar 

  89. de Weert CMM, Sadza KJ. New data concerning the contribution of colour differences to stereopsis. In: Mollon JD, Sharpe LT, editors. Colour vision: physiology and psychophysics. London: Academic; 1983. p. 553–62.

    Google Scholar 

  90. Scharff LV, Geisler WS. Stereopsis at isoluminance in the absence of chromatic aberrations. J Opt Soc Am A. 1992;9:868–76.

    Article  CAS  PubMed  Google Scholar 

  91. Simmons DT, Kingdom FAA. On the independence of chromatic and achromatic stereopsis mechanisms. Vis Res. 1997;37:1271–80.

    Article  CAS  PubMed  Google Scholar 

  92. Ts'o DY, Roe AW, Gilbert CD. A hierarchy of the functional architecture for color, form and disparity in primate visual area V2. Vis Res. 2001;41:1333–49.

    Article  PubMed  Google Scholar 

  93. Jordan JR, Geisler WS, Bovik AC. Color as a source of information in the stereo correspondence process. Vis Res. 1990;30:1955–70.

    Article  PubMed  Google Scholar 

  94. den Ouden HEM, van Ee R, de Haan EHF. Colour helps to solve the binocular matching problem. J Physiol. 2005;567:665–71.

    Article  CAS  Google Scholar 

  95. Hovis JK. Review of dichoptic color mixing. Optom Vis Sci. 1989;66:181–90.

    Article  CAS  PubMed  Google Scholar 

  96. Malkoc G, Kingdom FAA. Dichoptic difference thresholds for chromatic stimuli. Vis Res. 2012;62:75–83.

    Article  PubMed  Google Scholar 

  97. Blake R, Boothroyd K. The precedence of binocular fusion over binocular rivalry. Percept Psychophys. 1985;37:114–24.

    Article  CAS  PubMed  Google Scholar 

  98. Buckthought A, Wilson HR. Interaction between binocular rivalry and depth in plaid patterns. Vis Res. 2007;47:2543–56.

    Article  PubMed  Google Scholar 

  99. Kingdom FAA, Libenson L. Dichoptic colour saturation mixture: binocular luminance contrast promotes perceptual averaging. J Vis. 2015;in press.

    Google Scholar 

  100. Baker DH, Meese TS, Summers RJ. Psychophysical evidence for two routes to suppression before binocular summation of signals in human vision. Neuroscience. 2007;146:435–48.

    Article  CAS  PubMed  Google Scholar 

  101. Kingdom FAA, Wang D. Dichoptic colour-saturation masking is unmasked by binocular luminance contrast. Vis Res. 2015;116:45–52.

    Article  PubMed  Google Scholar 

  102. Jennings BJ, Kingdom FAA. Detection of between-eye differences in colour: Interactions with luminance. J Vis. 2016;In press.

    Google Scholar 

  103. Cavanagh P, Tyler CW, Favreau OE. Perceived velocity of moving chromatic gratings. J Opt Soc Am A. 1984;1:893–9.

    Article  CAS  PubMed  Google Scholar 

  104. Troscianko T, Fahle M. Why do isoluminant stimuli appear slower. J Opt Soc Am A. 1988;5:871–80.

    Article  CAS  PubMed  Google Scholar 

  105. Lu Z-L, Lesmes LA, Sperling G. Perceptual motion standstill in rapidly moving chromatic displays. Proc Natl Acad Sci U S A. 1999;96:15374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramachandran VS, Gregory RL. Does colour provide an input to human motion perception? Nature. 1978;275:55–6.

    Article  CAS  PubMed  Google Scholar 

  107. Yoshizawa T, Mullen KT, Baker CL. Absence of a chromatic linear motion mechanism in human vision. Vis Res. 2000;40:1993–2010.

    Article  CAS  PubMed  Google Scholar 

  108. Mullen KT, Yoshizawa T, Baker CL. Luminance mechanisms mediate the motion of red-green isoluminant gratings: the role of “temporal chromatic aberration.”. Vis Res. 2003;43:1235–47.

    Article  PubMed  Google Scholar 

  109. Gegenfurtner KR, Hawken MJ. Interaction of motion and color in the visual pathways. Trends Neurosci. 1996;19:394–401.

    Article  CAS  PubMed  Google Scholar 

  110. Cropper SJ, Derrington AM. Rapid colour-specific detection of motion in human vision. Nature. 1996;379:72–4.

    Article  CAS  PubMed  Google Scholar 

  111. Dobkins KR, Albright TD. What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors. Vis Res. 1993;33:1019–36.

    Article  CAS  PubMed  Google Scholar 

  112. Morgan MJ, Ingle G. What direction of motion do we see if luminance but not colour contrast is reversed during displacement? Psychophysical evidence for a signed-colour input to motion detection. Vis Res. 1994;34:2527–35.

    Article  CAS  PubMed  Google Scholar 

  113. Cropper SJ, Wuerger SM. The perception of motion in chromatic stimuli. Behav Cogn Neurosci Rev. 2005;4:192–217.

    Article  PubMed  Google Scholar 

  114. Cropper SJ, Derrington AM. Detection and motion-detection in chromatic and luminance beats. J Opt Soc Am A. 1995;13:401–7.

    Article  Google Scholar 

  115. Cavanagh P. Attention-based motion perception. Science. 1992;257:1563–5.

    Article  CAS  PubMed  Google Scholar 

  116. Bilodeau L, Faubert J. Global motion cues and the chromatic motion system. J Opt Soc Am A. 1999;16:1–5.

    Article  CAS  Google Scholar 

  117. Ruppertsberg AI, Wuerger SM, Bertami M. When S-cones contribute to chromatic global motion. Vis Neurosci. 2006;23:1–8.

    Article  Google Scholar 

  118. Croner LJ, Albright TD. Image segmentation enhances discrimination of motion in visual distractors. Vis Res. 1997;37:1415–27.

    Article  CAS  PubMed  Google Scholar 

  119. Snowden RJ, Edmunds R. Colour and polarity contributions to global motion perception. Vis Res. 1999;39:1813–22.

    Article  CAS  PubMed  Google Scholar 

  120. Li H-CO, Kingdom FAA. Segregation by colour/luminance does not necessarily facilitate motion discrimination in noise. Percept Psychophys. 2001;63:660–75.

    Article  CAS  PubMed  Google Scholar 

  121. Li H-CO, Kingdom FAA. Motion-surface labeling by orientation, spatial frequency and luminance polarity in 3-D structure-from-motion. Vis Res. 2001;41:3873–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a Canadian Institute of Health Research grant #MOP 123349 given to F.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick A. A. Kingdom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kingdom, F.A.A. (2016). Interactions of Color Vision with Other Visual Modalities. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_8

Download citation

Publish with us

Policies and ethics