Skip to main content

Interpreting LHC Searches for New Physics

  • Chapter
  • First Online:
Higgs, Supersymmetry and Dark Matter After Run I of the LHC

Part of the book series: Springer Theses ((Springer Theses))

  • 357 Accesses

Abstract

So the Higgs has been found—but where is new physics? Beyond the discovery of the Higgs boson and the measurements of its properties, the LHC was designed as a discovery machine for TeV-scale physics. Guided by naturalness arguments, there were high hopes in finding new physics “just around the (LEP) corner”, i.e. new particles in the 100–1000 GeV mass range. Unfortunately, after Run I of the LHC no significant excess was observed in the search for new physics in spite of the large variety of analyses performed by the ATLAS, CMS and LHCb collaborations. If new physics connected to electroweak symmetry breaking is indeed present, it is either well hidden, somewhat “unnatural” (in the case where the BSM particles are rather heavy), or it has experimental signatures not yet looked for or not yet thought of.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A very general search for events possibly including isolated electrons, photons and muons, as well as (b-)jets and missing transverse momentum has been performed by ATLAS [3]. While valuable, such a search approach is much less sensitive than optimized searches for specific models.

  2. 2.

    Attempts in this direction have however been made, see in particular Refs. [810] for the impact of the CMS SUSY searches on the pMSSM.

  3. 3.

    In the case of the production of a pair of charginos followed by slepton-mediated decays, it is assumed that the three flavors of (s)leptons contribute to the signal in this ATLAS analysis [13]. This is in contrast with the usual definition of the symbol \(\ell \) in this thesis.

  4. 4.

    The XSECTION statement is not part of the SLHA standard yet but it has been proposed at the 2013 Les Houches workshop, see [20].

  5. 5.

    However, the statistical interpretation of these simplified model results is not straightforward as only observed upper limits at 95 % CL are available.

  6. 6.

    The definitions of acceptance and efficiency as taken in Fig. 3.5 do not match with the ones given in Sect. 2.3, where A is the geometrical acceptance of the detector and \(\varepsilon \) is the efficiency of the cuts. Instead, A is defined as the fraction of signal events which pass the analysis selection performed on Monte Carlo “truth” objects and \(\varepsilon \) is a correcting factor for the reconstruction level cuts applied to reconstructed objects. Their product, \(A \times \varepsilon \), is the same irrespective of the individual definitions of A and \(\varepsilon \).

  7. 7.

    Three preliminary ATLAS searches for electroweak-inos and sleptons [2527] are implemented in FastLim 1.0, but cannot be used to constrain new physics because no efficiency map is given for any of the relevant topologies. Thus, only seven analyses are actually used in the current version of the program.

  8. 8.

    While the resulting pattern of heavy squarks and light sleptons is not the only possible choice, it seems well motivated from GUT-inspired models in which squarks typically turn out heavier than sleptons due to RGE running. Moreover, current LHC results indicate that squarks cannot be light. For a counter-example with light sbottoms, see Ref. [55].

  9. 9.

    Note that selectrons and smuons are safely above the LEP bound [14] since \(M_{L_1} > 100~\mathrm{GeV}\) and \(M_{R_1} > 100~\mathrm{GeV}\).

  10. 10.

    This is particularly the case in our study because our preferred very light neutralino scenarios have a small value for \(\mu \) of order 200 GeV.

  11. 11.

    Shortly before completion of this study, Ref. [84] has been updated with full luminosity at 8 TeV [85]. This update has not been included in the present work.

  12. 12.

    We also apply the democratic case if decays into selectrons/smuons are more important then those into staus, but this hardly ever occurs for the scenarios of interest.

  13. 13.

    To account for the lower local density when the neutralino relic density is below the measured range, the predicted \(\sigma _\mathrm{SI}\) is rescaled by a factor \(\xi = \Omega h^2/0.1189\).

  14. 14.

    We thank Thomas Schwetz and Nassim Bozorgnia for providing this code.

  15. 15.

    This assumption is central when applying the gluino mass limits from LHC searches.

  16. 16.

    We also performed MCMC sampling allowing \(m_{\tilde{\nu }_{1e}}>M_Z/2\) up to 3 TeV, keeping only the \(\tilde{\nu }_{1\tau }\) light, but the conclusions remain unchanged. So we will present our results only for the case \(m_{\tilde{\nu }_{1\tau }}<m_{\tilde{\nu }_{1e}}<M_Z/2\).

  17. 17.

    Note that if the electron/muon/tau sneutrinos are co-LSPs, this has important consequences for the relic density [100]. The \(e,\mu ,\tau \) sneutrino mass hierarchy moreover has important consequences for the LHC phenomenology (more electrons and muons instead of tau leptons from cascade decays), and for the annihilation channels for indirect detection signals. Furthermore, for a very light \(\tau \)-sneutrino, \(m_{\tilde{\nu }_{1\tau }} < m_{\tau } \simeq 1.78\) GeV, annihilation into a pair of tau leptons is kinematically forbidden, while for \(\tilde{\nu }_{1e,\mu }\) of the same mass annihilations into electrons or muons would be allowed.

  18. 18.

    In [141] XENON100 data has been implemented in a Bayesian study by constructing a likelihood function from the Poisson distribution based on the total number of expected signal and background events. We have checked that such a procedure leads to similar results as our approach based on the maximum-gap method.

  19. 19.

    Effectively, we impose \(\mathcal{B}(B_s \rightarrow \mu ^+\mu ^-) < 5.4 \times 10^{-9}\) as a hard cut, but we have checked that this makes no difference as compared to reweighing the likelihood according to Eq. (3.11).

  20. 20.

    To be more precise, it gets disfavored by a heavy wino, since \(m_{\tilde{g}}>1\) TeV implies \(m_{\tilde{\chi }^0_2}\gtrsim 300\) GeV in our model.

  21. 21.

    As mentioned in Sect. 3.3.2, the sneutrino can also annihilate through the heavy scalar (not the pseudoscalar!) Higgs resonance. We have checked that this process does occur in our chains. However, it turns out that it is statistically insignificant and does not single out any special region of parameter space.

  22. 22.

    \(X_t=A_t-\mu /\tan \beta \) and \(M_S^2=m_{\tilde{t}_1}m_{\tilde{t}_2}\). In fact the distribution of \(A_t\) is the only one that is significantly changed by requiring \(m_{h^0} \in [123,127]\) GeV, see also Contribution 8 of [150] and Sect. 2.8.

  23. 23.

    We thank Ursula Laa for running SmodelS on the SLHA files.

  24. 24.

    The choice of Gaussian distributions is highly subjective. For instance, the Poisson distribution may model better the knowledge of the background if it is directly taken from an auxiliary measurement. Also, the uncertainty on the signal cross section usually includes the variation of the factorization and renormalization scales in a given range to account for the unknown higher-order effects. This does not have any well-defined statistical meaning. Finally, one might prefer to have a probability distribution function defined in \(\mathbb {R}^+\) only.

  25. 25.

    Strictly speaking, there exists a third class of events once detector simulation has been included. In this case, the event final state consists of tracks and calorimeter deposits. MadAnalysis 5 has not been designed to analyze those events and physics objects such as (candidate) jets and electrons must be reconstructed prior to be able to use the program.

  26. 26.

    In order to activate the support of MadAnalysis 5 for the output format of Delphes 3, the user is requested to start the MadAnalysis 5 interpreter (in the normal execution mode of the program) and to type install delphes.

  27. 27.

    Note that MadAnalysis 5 version 1.2 can be run with the standalone Delphes; Delphes-MA5tune is no longer required, see http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase.

  28. 28.

    The Python code requires SciPy libraries to be installed.

  29. 29.

    The search also contains an analysis based on multivariate analysis techniques (MVA); such analyses generically cannot be externally reproduced unless the final MVA is given. As this is not the case so far, we here only use the cut-based version of the analysis.

References

  1. ATLAS Collaboration, G. Aad et al., Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(\sqrt{s}=8\) TeV proton–proton collision data. arXiv:1405.7875

  2. CMS Collaboration, S. Chatrchyan et al., Search for new physics in the multijet and missing transverse momentum final state in proton–proton collisions at \(\sqrt{s} = 8\) TeV. arXiv:1402.4770

  3. ATLAS Collaboration, A general search for new phenomena with the ATLAS detector in pp collisions at \(\sqrt{s} = 8\) TeV, ATLAS-CONF-2014-006

    Google Scholar 

  4. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

  5. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

  6. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

  7. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

  8. S. Sekmen, S. Kraml, J. Lykken, F. Moortgat, S. Padhi et al., Interpreting LHC SUSY searches in the phenomenological MSSM. JHEP 1202, 075 (2012). arXiv:1109.5119

    Article  ADS  Google Scholar 

  9. CMS Collaboration, Phenomenological MSSM interpretation of the CMS 2011 5 fb\(^{-1}\) results, CMS-PAS-SUS-12-030

    Google Scholar 

  10. CMS Collaboration, Phenomenological MSSM interpretation of the CMS 7 and 8 TeV results, CMS-PAS-SUS-13-020

    Google Scholar 

  11. C.M.S. Collaboration, S. Chatrchyan et al., Interpretation of searches for supersymmetry with simplified models. Phys. Rev. D 88(5), 052017 (2013). arXiv:1301.2175

    Article  ADS  Google Scholar 

  12. ATLAS Collaboration, H. Okawa, Interpretations of SUSY searches in ATLAS with simplified models. arXiv:1110.0282

  13. ATLAS Collaboration, G. Aad et al., Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. JHEP 1405, 071 (2014). arXiv:1403.5294

  14. LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL experiments. Notes LEPSUSYWG/01-03.1, LEPSUSYWG/02-04.1, and LEPSUSYWG/04-01.1, http://lepsusy.web.cern.ch/lepsusy/Welcome.html

  15. S. Kraml, S. Kulkarni, U. Laa, A. Lessa, W. Magerl et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry. Eur. Phys. J. C 74, 2868 (2014). arXiv:1312.4175

    Article  ADS  Google Scholar 

  16. M. Papucci, K. Sakurai, A. Weiler, L. Zeune, Fastlim: a fast LHC limit calculator. arXiv:1402.0492

  17. CMS Collaboration, V. Khachatryan et al., Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV. arXiv:1405.7570

  18. P.Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators. JHEP 0407, 036 (2004). hep-ph/0311123

    Article  ADS  Google Scholar 

  19. B. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema et al., SUSY Les Houches Accord 2. Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045

    Article  ADS  Google Scholar 

  20. http://phystev.in2p3.fr/wiki/2013:groups:tools:slha

  21. W. Beenakker, R. Hopker, M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD. hep-ph/9611232

    Google Scholar 

  22. http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast

  23. J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos et al., A Standard format for Les Houches event files. Comput. Phys. Commun. 176, 300–304 (2007). hep-ph/0609017

    Article  ADS  Google Scholar 

  24. A.L. Read, Presentation of search results: the \(CL_s\) technique. J. Phys. G28, 2693–2704 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. ATLAS Collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. ATLAS-CONF-2013-035

    Google Scholar 

  26. ATLAS Collaboration, Searches for direct slepton-pair and chargino-pair production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. ATLAS-CONF-2013-049

    Google Scholar 

  27. ATLAS Collaboration, Search for chargino and neutralino production in final states with one lepton, two \(b\)-jets consistent with a Higgs boson, and missing transverse momentum with the ATLAS detector in 20.3 fb\(^{-1}\) of \(\sqrt{s} = 8\) TeV pp collisions. ATLAS-CONF-2013-093

    Google Scholar 

  28. CoGeNT Collaboration, C. Aalseth et al., Results from a search for light-mass dark matter with a P-type point contact germanium detector. Phys. Rev. Lett. 106, 131301 (2011). arXiv:1002.4703

    Article  Google Scholar 

  29. C. Aalseth, P. Barbeau, J. Colaresi, J. Collar, J. Diaz Leon, et al., Search for an annual modulation in a P-type point contact germanium dark matter detector. Phys. Rev. Lett. 107 141301 (2011). arXiv:1106.0650

  30. D.A.M.A. Collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008). arXiv:0804.2741

    Article  Google Scholar 

  31. C.D.M.S. Collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111, 251301 (2013). arXiv:1304.4279

    Article  Google Scholar 

  32. G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci et al., Results from 730 kg days of the CRESST-II dark matter search. Eur. Phys. J. C 72, 1971 (2012). arXiv:1109.0702

    Article  ADS  Google Scholar 

  33. XENON100 Collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012). arXiv:1207.5988

    Article  Google Scholar 

  34. XENON10 Collaboration, J. Angle et al., A search for light dark matter in XENON10 data. Phys. Rev. Lett. 107, 051301 (2011). arXiv:1104.3088

  35. LUX Collaboration, D. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility. arXiv:1310.8214

  36. D. Hooper, T. Linden, On the origin of the gamma rays from the galactic center. Phys. Rev. D 84, 123005 (2011). arXiv:1110.0006

    Article  ADS  Google Scholar 

  37. D. Hooper, The empirical case for 10 GeV dark matter. Phys. Dark Univ. 1, 1–23 (2012). arXiv:1201.1303

    Article  Google Scholar 

  38. A. Berlin, D. Hooper, Stringent constraints on the dark matter annihilation cross section from subhalo searches with the Fermi gamma-ray space telescope. Phys. Rev. D 89, 016014 (2014). arXiv:1309.0525

    Article  ADS  Google Scholar 

  39. D. Hooper, T. Plehn, Supersymmetric dark matter: how light can the LSP be? Phys. Lett. B 562, 18–27 (2003). hep-ph/0212226

    Article  ADS  Google Scholar 

  40. A. Bottino, N. Fornengo, S. Scopel, Light relic neutralinos. Phys. Rev. D 67, 063519 (2003). hep-ph/0212379

    Article  ADS  Google Scholar 

  41. G. Belanger, F. Boudjema, A. Cottrant, A. Pukhov, S. Rosier-Lees, Lower limit on the neutralino mass in the general MSSM. JHEP 0403, 012 (2004). hep-ph/0310037

    Article  ADS  Google Scholar 

  42. A. Bottino, F. Donato, N. Fornengo, S. Scopel, Lower bound on the neutralino mass from new data on CMB and implications for relic neutralinos. Phys. Rev. D 68, 043506 (2003). hep-ph/0304080

    Article  ADS  Google Scholar 

  43. A. Bottino, F. Donato, N. Fornengo, S. Scopel, Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification. Phys. Rev. D 70, 015005 (2004). hep-ph/0401186

    Article  ADS  Google Scholar 

  44. H.K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber et al., Mass bounds on a very light neutralino. Eur. Phys. J. C 62, 547–572 (2009). arXiv:0901.3485

    Article  ADS  Google Scholar 

  45. L. Calibbi, T. Ota, Y. Takanishi, Light neutralino in the MSSM: a playground for dark matter, flavor physics and collider experiments. JHEP 1107, 013 (2011). arXiv:1104.1134

    Article  ADS  Google Scholar 

  46. A. Arbey, M. Battaglia, F. Mahmoudi, Light neutralino dark matter in the pMSSM: implications of LEP, LHC and dark matter searches on SUSY particle spectra. Eur. Phys. J. C 72, 2169 (2012). arXiv:1205.2557

    Article  ADS  Google Scholar 

  47. D.T. Cumberbatch, D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri, Y.-L.S. Tsai, Is light neutralino as dark matter still viable? arXiv:1107.1604

  48. E. Kuflik, A. Pierce, K.M. Zurek, Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model. Phys. Rev. D 81, 111701 (2010). arXiv:1003.0682

    Article  ADS  Google Scholar 

  49. D. Hooper, T. Plehn, A. Vallinotto, Neutralino dark matter and trilepton searches in the MSSM. Phys. Rev. D 77, 095014 (2008). arXiv:0801.2539

    Article  ADS  Google Scholar 

  50. D.A. Vasquez, G. Belanger, C. Boehm, A. Pukhov, J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light? Phys. Rev. D 82, 115027 (2010). arXiv:1009.4380

    Article  ADS  Google Scholar 

  51. A.V. Belikov, J.F. Gunion, D. Hooper, T.M. Tait, CoGeNT, DAMA, and light neutralino dark matter. Phys. Lett. B 705, 82–86 (2011). arXiv:1009.0549

    Article  ADS  Google Scholar 

  52. C. Boehm, P.S.B. Dev, A. Mazumdar, E. Pukartas, Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck Data. JHEP 1306, 113 (2013). arXiv:1303.5386

    Article  ADS  Google Scholar 

  53. T. Han, Z. Liu, A. Natarajan, Dark matter and Higgs bosons in the MSSM. JHEP 1311, 008 (2013). arXiv:1303.3040

    Article  ADS  Google Scholar 

  54. L. Calibbi, J.M. Lindert, T. Ota, Y. Takanishi, Cornering light Neutralino dark matter at the LHC. JHEP 1310, 132 (2013). arXiv:1307.4119

    Article  ADS  Google Scholar 

  55. A. Arbey, M. Battaglia, F. Mahmoudi, Supersymmetry with light dark matter confronting the recent CDMS and LHC results. Phys. Rev. D 88, 095001 (2013). arXiv:1308.2153

    Article  ADS  Google Scholar 

  56. G. Belanger, F. Boudjema, A. Cottrant, R. Godbole, A. Semenov, The MSSM invisible Higgs in the light of dark matter and g-2. Phys. Lett. B 519, 93–102 (2001). hep-ph/0106275

    Article  ADS  Google Scholar 

  57. D. Albornoz Vasquez, G. Belanger, R. Godbole, A. Pukhov, The Higgs boson in the MSSM in light of the LHC. Phys. Rev. D85, 115013 (2012). arXiv:1112.2200

  58. Planck Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076

  59. G. Belanger, S. Biswas, C. Boehm, B. Mukhopadhyaya, Light neutralino dark matter in the MSSM and its implication for LHC searches for staus. JHEP 1212, 076 (2012). arXiv:1206.5404

    Article  ADS  Google Scholar 

  60. ATLAS Collaboration, Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton–proton collisions at \(\sqrt{s} = 8\) TeV. ATLAS-CONF-2013-028

    Google Scholar 

  61. G. Bélanger, G. Drieu La Rochelle, B. Dumont, R.M. Godbole, S. Kraml et al., LHC constraints on light neutralino dark matter in the MSSM. Phys. Lett. B 726, 773–780 (2013). arXiv:1308.3735

    Article  ADS  Google Scholar 

  62. B. Dumont, Higgs coupling measurements and impact on the MSSM. PoS DIS2014, 128 (2014). arXiv:1407.0415

  63. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs_3: a program for calculating dark matter observables. Comput. Phys. Commun. 185, 960–985 (2014). arXiv:1305.0237

    Article  ADS  Google Scholar 

  64. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  65. A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model. Comput. Phys. Commun. 184, 1729–1769 (2013). arXiv:1207.6082

    Article  ADS  MATH  Google Scholar 

  66. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance. Phys. Rep 427 (2006) 257–454. hep-ex/0509008

    Google Scholar 

  67. OPAL Collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \(\sqrt{s} = 192 - 209\) GeV at LEP. Eur. Phys. J. C35, 1–20 (2004). hep-ex/0401026

    Google Scholar 

  68. Muon G-2 Collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D73,072003 (2006). hep-ex/0602035

    Google Scholar 

  69. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, \((g-2)_\mu \) and \(\alpha (M_Z^2)\) re-evaluated using new precise data. J. Phys. G38, 085003 (2011). arXiv:1105.3149

    Article  ADS  Google Scholar 

  70. D. Stockinger, The muon magnetic moment and supersymmetry. J. Phys. G34, R45–R92 (2007). hep-ph/0609168

    Article  ADS  Google Scholar 

  71. M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki et al., Estimate of \((\bar{B} \rightarrow X_s \gamma )\) at \((\alpha _s^2)\). Phys. Rev. Lett. 98, 022002 (2007). hep-ph/0609232

    Article  ADS  Google Scholar 

  72. Heavy Flavor Averaging Group Collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012. arXiv:1207.1158

  73. CMS, LHCb Collaboration, Combination of results on the rare decays \(B^0_{(s)} \rightarrow \mu ^+\mu ^-\) from the CMS and LHCb experiments

    Google Scholar 

  74. A. Akeroyd, F. Mahmoudi, D.M. Santos, The decay \(B_s \rightarrow \mu ^+\mu ^-\): updated SUSY constraints and prospects. JHEP 1112, 088 (2011). arXiv:1108.3018

    Article  ADS  Google Scholar 

  75. ATLAS Collaboration, G. Aad et al., Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. Phys. Lett. B726, 88–119 (2013). arXiv:1307.1427

  76. CMS Collaboration, Measurements of the properties of the new boson with a mass near 125 GeV. CMS-PAS-HIG-13-005

    Google Scholar 

  77. CMS Collaboration, Search for MSSM neutral Higgs bosons decaying to tau pairs in pp collisions. CMS-PAS-HIG-12-050

    Google Scholar 

  78. M. Carena, S. Heinemeyer, O. Stål, C. Wagner, G. Weiglein, MSSM Higgs Boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C 73, 2552 (2013). arXiv:1302.7033

    Article  ADS  Google Scholar 

  79. M.S. Carena, M. Olechowski, S. Pokorski, C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification. Nucl. Phys. B 426, 269–300 (1994). hep-ph/9402253

    Article  ADS  Google Scholar 

  80. H. Leutwyler, The ratios of the light quark masses. Phys. Lett. B 378, 313–318 (1996). hep-ph/9602366

    Article  ADS  Google Scholar 

  81. A. Thomas, P. Shanahan, R. Young, Strangeness in the nucleon: what have we learned? Nuovo Cim. C035N04, 3–10 (2012). arXiv:1202.6407

  82. Fermi-LAT Collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi large area telescope. Phys. Rev. Lett. 107, 241302 (2011). arXiv:1108.3546

    Article  Google Scholar 

  83. Fermi-LAT Collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 milky way satellite galaxies with the Fermi large area telescope. Phys. Rev. D 89, 042001 (2014). arXiv:1310.0828

    Article  ADS  Google Scholar 

  84. CMS Collaboration, Search for electroweak production of charginos, neutralinos, and sleptons using leptonic final states in pp collisions at \(\sqrt{s} = 8\) TeV. CMS-PAS-SUS-12-022

    Google Scholar 

  85. CMS Collaboration, Search for electroweak production of charginos, neutralinos, and sleptons using leptonic final states in pp at \(\sqrt{s} = 8\) TeV. CMS-PAS-SUS-13-006

    Google Scholar 

  86. CMS Collaboration, Search for new physics in monojet events in pp collisions at \(\sqrt{s} = 8\) TeV. CMS-PAS-EXO-12-048

    Google Scholar 

  87. ATLAS Collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb\(^{-1}\) of pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector at the LHC. ATLAS-CONF-2012-147

    Google Scholar 

  88. N. Bozorgnia, R. Catena, T. Schwetz, Anisotropic dark matter distribution functions and impact on WIMP direct detection. JCAP 1312, 050 (2013). arXiv:1310.0468

    Article  ADS  Google Scholar 

  89. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, L.-T. Wang, Light stau phenomenology and the Higgs \(\gamma \gamma \) rate. JHEP 1207, 175 (2012). arXiv:1205.5842

    Article  ADS  Google Scholar 

  90. ATLAS Collaboration, Physics at a high-luminosity LHC with ATLAS (Update). ATL-PHYS-PUB-2012-004

    Google Scholar 

  91. CMS Collaboration, CMS at the high-energy frontier contribution to the update of the European strategy for particle physics. CMS-NOTE-2012-006

    Google Scholar 

  92. D. Ghosh, R. Godbole, M. Guchait, K. Mohan, D. Sengupta, Looking for an invisible Higgs signal at the LHC. Phys. Lett. B725(344) (2013). arXiv:1211.7015

  93. N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith, N. Weiner, Small neutrino masses from supersymmetry breaking. Phys. Rev. D 64, 115011 (2001). hep-ph/0006312

    Article  ADS  Google Scholar 

  94. F. Borzumati, Y. Nomura, Low scale seesaw mechanisms for light neutrinos. Phys. Rev. D 64, 053005 (2001). hep-ph/0007018

    Article  ADS  Google Scholar 

  95. B. Dumont, G. Belanger, S. Fichet, S. Kraml, T. Schwetz, Mixed sneutrino dark matter in light of the 2011 XENON and LHC results. JCAP 1209, 013 (2012). arXiv:1206.1521

    Article  ADS  Google Scholar 

  96. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1–29 (2012). arXiv:1207.7214

  97. C.M.S. Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235

    Article  ADS  Google Scholar 

  98. N. Bozorgnia, J. Herrero-Garcia, T. Schwetz, J. Zupan, Halo-independent methods for inelastic dark matter scattering. JCAP 1307, 049 (2013). arXiv:1305.3575

    Article  ADS  Google Scholar 

  99. N. Bozorgnia, T. Schwetz, Is the effect of the Sun’s gravitational potential on dark matter particles observable?. arXiv:1405.2340

  100. G. Belanger, M. Kakizaki, E. Park, S. Kraml, A. Pukhov, Light mixed sneutrinos as thermal dark matter. JCAP 1011, 017 (2010). arXiv:1008.0580

    Article  ADS  Google Scholar 

  101. C. Arina, N. Fornengo, Sneutrino cold dark matter, a new analysis: relic abundance and detection rates. JHEP 0711, 029 (2007). arXiv:0709.4477

    Article  ADS  Google Scholar 

  102. K.-Y. Choi, O. Seto, A Dirac right-handed sneutrino dark matter and its signature in the gamma-ray lines. Phys. Rev. D 86, 043515 (2012). arXiv:1205.3276

    Article  ADS  Google Scholar 

  103. D. Hooper, J. March-Russell, S.M. West, Asymmetric sneutrino dark matter and the Omega(b)/Omega(DM) puzzle. Phys. Lett. B 605, 228–236 (2005). hep-ph/0410114

    Article  ADS  Google Scholar 

  104. Z. Thomas, D. Tucker-Smith, N. Weiner, Mixed sneutrinos, dark matter and the CERN LHC. Phys. Rev. D 77, 115015 (2008). arXiv:0712.4146

    Article  ADS  Google Scholar 

  105. G. Belanger, S. Kraml, A. Lessa, Light sneutrino dark matter at the LHC. JHEP 1107, 083 (2011). arXiv:1105.4878

    Article  ADS  Google Scholar 

  106. C. Arina, M.E. Cabrera, Multi-lepton signatures at LHC from sneutrino dark matter. arXiv:1311.6549

  107. B. Allanach, C. Lester, Multi-dimensional mSUGRA likelihood maps. Phys. Rev. D 73, 015013 (2006). hep-ph/0507283

    Article  ADS  Google Scholar 

  108. R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008). arXiv:0803.4089

    Article  ADS  Google Scholar 

  109. A. Gelman, D.B. Rubin, Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)

    Article  Google Scholar 

  110. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747–767 (2009). arXiv:0803.2360

    Article  ADS  MATH  Google Scholar 

  111. G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees et al., Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun. 182, 842–856 (2011). arXiv:1004.1092

    Article  ADS  MATH  Google Scholar 

  112. M. Spira, HIGLU and HDECAY: programs for Higgs boson production at the LHC and Higgs boson decay widths. Nucl. Instrum. Methods A389, 357–360 (1997). hep-ph/9610350

    Article  ADS  Google Scholar 

  113. A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998). hep-ph/9704448

    Article  ADS  MATH  Google Scholar 

  114. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron. Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169

    Article  ADS  MATH  Google Scholar 

  115. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898

    Article  ADS  MATH  Google Scholar 

  116. C. McCabe, The astrophysical uncertainties of dark matter direct detection experiments. Phys. Rev. D 82, 023530 (2010). arXiv:1005.0579

    Article  ADS  Google Scholar 

  117. R. Catena, P. Ullio, A novel determination of the local dark matter density. JCAP 1008, 004 (2010). arXiv:0907.0018

    Article  ADS  Google Scholar 

  118. R. Catena, P. Ullio, The local dark matter phase-space density and impact on WIMP direct detection. JCAP 1205, 005 (2012). arXiv:1111.3556

    Article  ADS  Google Scholar 

  119. J. Bovy, S. Tremaine, On the local dark matter density. Astrophys. J. 756, 89 (2012). arXiv:1205.4033

    Article  ADS  Google Scholar 

  120. M. Weber, W. de Boer, Determination of the local dark matter density in our galaxy. Astron. Astrophys. 509, A25 (2010). arXiv:0910.4272

    Article  ADS  Google Scholar 

  121. P. Salucci, F. Nesti, G. Gentile, C. Martins, The dark matter density at the Sun’s location. Astron. Astrophys. 523, A83 (2010). arXiv:1003.3101

    Article  ADS  Google Scholar 

  122. A. Ghez, S. Salim, N. Weinberg, J. Lu, T. Do et al., Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008). arXiv:0808.2870

    Article  ADS  Google Scholar 

  123. S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel et al., Monitoring stellar orbits around the Massive Black Hole in the Galactic Center. Astrophys. J. 692, 1075–1109 (2009). arXiv:0810.4674

    Article  ADS  Google Scholar 

  124. S.E. Koposov, H.-W. Rix, D.W. Hogg, Constraining the Milky Way potential with a 6-D phase-space map of the GD-1 stellar stream. Astrophys. J. 712, 260–273 (2010). arXiv:0907.1085

    Article  ADS  Google Scholar 

  125. P.J. McMillan, J.J. Binney, The uncertainty in Galactic parameters. arXiv:0907.4685

  126. M.C. Smith, G. Ruchti, A. Helmi, R. Wyse, J. Fulbright et al., The RAVE survey: constraining the local galactic escape speed. Mon. Not. R. Astron. Soc. 379, 755–772 (2007). astro-ph/0611671

    Article  ADS  Google Scholar 

  127. Tevatron Electroweak Working Group, CDF, D0 Collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.6 \(fb^{-1}\) of data. arXiv:1007.3178

  128. Particle Data Group Collaboration, K. Nakamura et al., Review of particle physics. J. Phys. G37, 075021 (2010)

    ADS  Google Scholar 

  129. W.M.A.P. Collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538

    Article  Google Scholar 

  130. XENON100 Collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549

    Article  Google Scholar 

  131. CDMS-II Collaboration, Z. Ahmed et al., Results from a low-energy analysis of the CDMS II germanium data. Phys. Rev. Lett. 106 (2011) 131302, arXiv:1011.2482

  132. ATLAS Collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \(\sqrt{s}=7\) TeV proton–proton collisions. Phys. Lett. B710, 67–85 (2012). arXiv:1109.6572

  133. CMS Collaboration, Search for supersymmetry with the razor variables. CMS-PAS-SUS-11-008

    Google Scholar 

  134. Heavy Flavor Averaging Group Collaboration, D. Asner et al., Averages of b-hadron, c-hadron, and \(\tau \)-lepton properties. arXiv:1010.1589

  135. CMS, LHCb Collaboration, Search for the rare decay \(B^0_s \rightarrow \mu ^+\mu ^-\) at the LHC with the CMS and LHCb experiments. CMS-PAS-BPH-11-019, LHCb-CONF-2011-047

    Google Scholar 

  136. J. Kopp, T. Schwetz, J. Zupan, Light dark matter in the light of CRESST-II. JCAP 1203, 001 (2012). arXiv:1110.2721

    Article  ADS  Google Scholar 

  137. T. Schwetz, J. Zupan, Dark matter attempts for CoGeNT and DAMA. JCAP 1108, 008 (2011). arXiv:1106.6241

    Article  ADS  Google Scholar 

  138. J. Herrero-Garcia, T. Schwetz, J. Zupan, Astrophysics independent bounds on the annual modulation of dark matter signals. Phys. Rev. Lett. 109, 141301 (2012). arXiv:1205.0134

    Article  ADS  Google Scholar 

  139. CDMS Collaboration, Z. Ahmed et al., Search for annual modulation in low-energy CDMS-II data. arXiv:1203.1309

  140. S. Yellin, Finding an upper limit in the presence of unknown background. Phys. Rev. D66, 032005 (2002). physics/0203002

    Google Scholar 

  141. G. Bertone, D.G. Cerdeno, M. Fornasa, R. Ruiz de Austri, C. Strege et al., Global fits of the cMSSM including the first LHC and XENON100 data. JCAP 1201, 015 (2012). arXiv:1107.1715

    Article  ADS  Google Scholar 

  142. CMS Collaboration, Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \(\sqrt{s} = 7\) TeV. CMS-PAS-HIG-11-009

    Google Scholar 

  143. LHCb Collaboration, R. Aaij et al., Strong constraints on the rare decays \(B_s \rightarrow \mu ^+ \mu ^-\) and \(B^0 \rightarrow \mu ^+ \mu ^-\). Phys. Rev. Lett. 108, 231801 (2012). arXiv:1203.4493

  144. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ). Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180

    Article  ADS  Google Scholar 

  145. J.F. Navarro, C.S. Frenk, S.D. White, A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997). astro-ph/9611107

    Article  ADS  Google Scholar 

  146. PAMELA Collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. Phys. Rev. Lett. 105, 121101 (2010). arXiv:1007.0821

  147. D. Maurin, R. Taillet, C.Combet, Approximate formulae for exotic GCR anti-protons and anti-deuterons: fluxes and astrophysical uncertainties. Phys. Rev. D (2006). astro-ph/0609522

    Google Scholar 

  148. D. Maurin, F. Donato, R. Taillet, P. Salati, Cosmic rays below \(\text{z}=30\) in a diffusion model: new constraints on propagation parameters. Astrophys. J. 555, 585–596 (2001). stro-ph/0101231

    Google Scholar 

  149. F. Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul et al., Anti-protons from spallations of cosmic rays on interstellar matter. Astrophys. J. 563, 172–184 (2001). astro-ph/0103150

    Article  ADS  Google Scholar 

  150. G. Brooijmans, B. Gripaios, F. Moortgat, J. Santiago, P. Skands, et al., Les Houches 2011: physics at TeV colliders new physics working group report. arXiv:1203.1488

  151. D. Feldman, Z. Liu, P. Nath, PAMELA positron excess as a signal from the hidden sector. Phys. Rev. D 79, 063509 (2009). arXiv:0810.5762

    Article  ADS  Google Scholar 

  152. M. Ibe, H. Murayama, T. Yanagida, Breit-Wigner enhancement of dark matter annihilation. Phys. Rev. D 79, 095009 (2009). arXiv:0812.0072

    Article  ADS  Google Scholar 

  153. X.-J. Bi, X.-G. He, Q. Yuan, Parameters in a class of leptophilic models from PAMELA. ATIC and FERMI. Phys. Lett. B 678, 168–173 (2009). arXiv:0903.0122

    Article  ADS  Google Scholar 

  154. D. Albornoz Vasquez, G. Belanger, C. Boehm, Astrophysical limits on light NMSSM neutralinos. Phys. Rev. D84 (2011) 095008, arXiv:1107.1614

  155. Heavy Flavor Averaging Group Collaboration, Y. Amhis et al., HFAG update, May 2013. http://www.slac.stanford.edu/xorg/hfag/rare/2013/radll/OUTPUT/TABLES/radll.pdf

  156. G. Brooijmans, R. Contino, B. Fuks, F. Moortgat, P. Richardson, et al., Les Houches 2013: physics at TeV colliders: new physics working group report. arXiv:1405.1617

  157. E. Conte, B. Fuks, G. Serret, MadAnalysis 5, A user-friendly framework for collider phenomenology. Comput. Phys. Commun. 184, 222–256 (2013). arXiv:1206.1599

    Article  ADS  MathSciNet  Google Scholar 

  158. E. Conte, B. Fuks, MadAnalysis 5: status and new developments. arXiv:1309.7831

  159. E. Conte, B. Dumont, B. Fuks, C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5. arXiv:1405.3982

  160. http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm

  161. DELPHES 3 Collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment. JHEP 1402, 057 (2014). arXiv:1307.6346

  162. ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton–proton collision data. ATLAS-CONF-2014-032

    Google Scholar 

  163. S. Kraml, B. Allanach, M. Mangano, H. Prosper, S. Sekmen et al., Searches for new physics: Les Houches recommendations for the presentation of LHC results. Eur. Phys. J. C 72, 1976 (2012). arXiv:1203.2489

    Article  ADS  Google Scholar 

  164. C.M.S. Collaboration, S. Chatrchyan et al., Search for top-squark pair production in the single-lepton final state in pp collisions at \(\sqrt{s} = 8\) TeV. Eur. Phys. J. C 73, 2677 (2013). arXiv:1308.1586

    Article  ADS  Google Scholar 

  165. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

  166. Particle Data Group Collaboration, J. Beringer et al., Review of particle physics (RPP). Phys. Rev. D86,010001 (2012)

    Google Scholar 

  167. LHC Higgs Combination Group, ATLAS, CMS Collaboration, Procedure for the LHC Higgs boson search combination in Summer 2011. ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005

    Google Scholar 

  168. B. Dumont, B. Fuks, S. Kraml, S. Bein, G. Chalons, et al., Towards a public analysis database for LHC new physics searches using MadAnalysis 5. arXiv:1407.3278

  169. http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase

  170. http://www.datacite.org

  171. http://cepa.fnal.gov/psm/stdhep/c++/

  172. M. Dobbs, J.B. Hansen, The HepMC C++ Monte Carlo event record for high energy physics. Comput. Phys. Commun. 134, 41–46 (2001)

    Article  ADS  Google Scholar 

  173. M. Drees, H. Dreiner, D. Schmeier, J. Tattersall, J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC Data. arXiv:1312.2591

  174. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 1106, 128 (2011). arXiv:1106.0522

    Article  ADS  MATH  Google Scholar 

  175. H. Plothow-Besch, PDFLIB: a Library of all available parton density functions of the nucleon, the pion and the photon and the corresponding \(\alpha _s\) calculations. Comput. Phys. Commun. 75, 396–416 (1993)

    Article  ADS  Google Scholar 

  176. W. Giele, E.N. Glover, I. Hinchliffe, J. Huston, E. Laenen, et al., The QCD/SM working group: summary report. hep-ph/0204316

    Google Scholar 

  177. E. Boos, M. Dobbs, W. Giele, I. Hinchliffe, J. Huston, et al., Generic user process interface for event generators. hep-ph/0109068

    Google Scholar 

  178. http://www.jthaler.net/olympicswiki/

  179. R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Methods A389, 81–86 (1997)

    Article  ADS  Google Scholar 

  180. L. Randall, D. Tucker-Smith, Dijet searches for supersymmetry at the LHC. Phys. Rev. Lett. 101, 221803 (2008). arXiv:0806.1049

    Article  ADS  Google Scholar 

  181. C. Lester, D. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys. Lett. B 463, 99–103 (1999). hep-ph/9906349

    Article  ADS  Google Scholar 

  182. H.-C. Cheng, Z. Han, Minimal kinematic constraints and \(m_{T2}\). JHEP 0812, 063 (2008). arXiv:0810.5178

    Article  ADS  Google Scholar 

  183. Y. Bai, H.-C. Cheng, J. Gallicchio, J. Gu, Stop the top background of the stop search. JHEP 1207, 110 (2012). arXiv:1203.4813

    Article  ADS  Google Scholar 

  184. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13011

  185. C.M.S. Collaboration, S. Chatrchyan et al., Search for new physics in events with same-sign dileptons and jets in pp collisions at \(\sqrt{s} = 8\) TeV. JHEP 1401, 163 (2014). arXiv:1311.6736

    ADS  Google Scholar 

  186. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605 (2006) 026. hep-ph/0603175

    Google Scholar 

  187. M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, et al., Supersymmetry production cross sections in pp collisions at \(\sqrt{s}=7\) TeV. arXiv:1206.2892

  188. B. Dumont, B. Fuks, C. Wymant, MadAnalysis 5 implementation of CMS-SUS-13-011: search for stops in the single lepton final state at 8 TeV. https://inspirehep.net/record/1301484, doi:10.7484/INSPIREHEP.DATA.LR5T.2RR3

  189. M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639–707 (2008). arXiv:0803.0883

    Article  ADS  Google Scholar 

  190. B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV. JHEP 1210, 081 (2012). arXiv:1207.2159

    Article  ADS  Google Scholar 

  191. B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino. Eur. Phys. J. C 73, 2480 (2013). arXiv:1304.0790

    Article  ADS  Google Scholar 

  192. B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, Revisiting slepton pair production at the Large Hadron Collider. JHEP 1401, 168 (2014). arXiv:1310.2621

    Article  ADS  Google Scholar 

  193. B. Dumont, MadAnalysis 5 implementation of ATLAS-SUSY-2013-11: di-leptons plus MET. http://inspirehep.net/record/1326686, doi:10.7484/INSPIREHEP.DATA.HLMR.T56W.2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béranger Dumont .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dumont, B. (2017). Interpreting LHC Searches for New Physics. In: Higgs, Supersymmetry and Dark Matter After Run I of the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44956-2_3

Download citation

Publish with us

Policies and ethics