Skip to main content

Multiscale Modeling of Diseases: Overview

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Some of the most recent advances in multiscale modeling of human diseases are briefly summarized. These progresses benefited from the rapid development of advanced multiscale modeling techniques as well as the development and availability of new mechanobiology experimental techniques and diverse imaging modalities. The close interdisciplinary collaborations between modeling scientists, experimentalists, and medical doctors enabled unprecedented quantitative understanding of human pathologies. Two specific examples are given on the recent advances in multiscale modeling of malaria – an infectious disease and sickle cell disease – a genetic disease. Future outlook is presented, followed by a brief introduction of the chapters included in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2(11):715–725

    Article  ADS  Google Scholar 

  • Bow H et al (2011) A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11(6):1065–1073

    Article  Google Scholar 

  • Carvalho PA, Diez-Silva M, Chen H, Dao M, Suresh S (2013) Cytoadherence of erythrocytes invaded by Plasmodium falciparum: quantitative contact-probing of a human malaria receptor. Acta Biomater 9(5):6349–6359

    Article  Google Scholar 

  • Choi W et al (2007) Tomographic phase microscopy. Nat Methods 4(9):717–719

    Article  Google Scholar 

  • Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51(11–12):2259–2280

    Article  ADS  Google Scholar 

  • Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater Sci Eng C-Biomim Supramol Syst 26(8):1232–1244

    Article  Google Scholar 

  • Desai M et al (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7(2):93–104

    Article  Google Scholar 

  • Diez-Silva M, Dao M, Han JY, Lim CT, Suresh S (2010) Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 35(5):382–388

    Article  Google Scholar 

  • Diez-Silva M et al (2012) Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci Rep 2:614

    Article  Google Scholar 

  • Du E et al (2013) Electric impedance microflow cytometry for characterization of cell disease states. Lab Chip 13(19):3903–3909

    Article  Google Scholar 

  • Du E, Diez-Silva M, Kato GJ, Dao M, Suresh S (2015) Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc Natl Acad Sci U S A 112(5):1422–1427

    Article  ADS  Google Scholar 

  • Fedosov DA, Caswell B, Suresh S, Karniadakis GE (2011a) Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci U S A 108(1):35–39

    Article  ADS  Google Scholar 

  • Fedosov DA, Lei H, Caswell B, Suresh S, Karniadakis GE (2011b) Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput Biol 7(12):e1002270

    Article  ADS  MathSciNet  Google Scholar 

  • Fedosov DA, Dao M, Karniadakis GE, Suresh S (2014) Computational biorheology of human blood flow in health and disease. Ann Biomed Eng 42(2):368–387

    Article  Google Scholar 

  • Greenwood BM et al (2008) Malaria: progress, perils, and prospects for eradication. J Clin Investig 118(4):1266–1276

    Article  Google Scholar 

  • Hosseini P et al (2016) Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proc Natl Acad Sci U S A 113(34):9527–9532

    Article  ADS  Google Scholar 

  • Kaul DK, Fabry ME (2004) In vivo studies of sickle red blood cells. Microcirculation 11(2):153–165

    Google Scholar 

  • Lei H, Karniadakis GE (2012) Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers. Soft Matter 8(16):4507–4516

    Article  ADS  Google Scholar 

  • Lei H, Karniadakis GE (2013) Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations. Proc Natl Acad Sci U S A 110(28):11326–11330

    Article  ADS  Google Scholar 

  • Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88(5):3707–3719

    Article  Google Scholar 

  • Li J, Lykotrafitis G, Dao M, Suresh S (2007) Cytoskeletal dynamics of human erythrocyte. Proc Natl Acad Sci U S A 104(12):4937–4942

    Article  ADS  Google Scholar 

  • Li XJ, Caswell B, Karniadakis GE (2012) Effect of chain chirality on the self-assembly of sickle hemoglobin. Biophys J 103(6):1130–1140

    Article  Google Scholar 

  • Li XJ, Vlahovska PM, Karniadakis GE (2013) Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9(1):28–37

    Article  ADS  Google Scholar 

  • Li XJ, Peng ZL, Lei H, Dao M, Karniadakis GE (2014) Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philos Trans R Soc A-Math Phys Eng Sci 372(2021):20130389

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Li XJ et al (2016) Patient-specific blood rheology in sickle-cell anaemia. Interface Focus 6(1):20150065

    Article  Google Scholar 

  • Li XJ, Dao M, Lykotrafitis G, Karniadakis GE (2017a) Biomechanics and biorheology of red blood cells in sickle cell anemia. J Biomech 50:34–41

    Article  Google Scholar 

  • Li X, Du E, Dao M, Suresh S, Karniadakis GE (2017b) Patient-specific modeling of individual sickle cell behavior under transient hypoxia. PLoS Comput Biol 13(3):e1005426

    Article  ADS  Google Scholar 

  • Lin CL, Peng GCY, Karniadakis G (2013) Multi-scale modeling and simulation of biological systems preface. J Comput Phys 244:1–3

    Article  ADS  MathSciNet  Google Scholar 

  • Lu L, Li XJ, Vekilov PG, Karniadakis GE (2016) Probing the twisted structure of sickle hemoglobin fibers via particle simulations. Biophys J 110(9):2085–2093

    Article  Google Scholar 

  • Lu L, Li H, Bian X, Li XJ, Karniadakis GE (2017) Mesoscopic adaptive resolution scheme toward understanding of interactions between sickle cell fibers. Biophys J 113(1):48–59

    Article  Google Scholar 

  • Maciaszek JL, Lykotrafitis G (2011) Sickle cell trait human erythrocytes are significantly stiffer than normal. J Biomech 44(4):657–661

    Article  Google Scholar 

  • Mills JP et al (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci U S A 104(22):9213–9217

    Article  ADS  Google Scholar 

  • O’Meara WP, Mangeni JN, Steketee R, Greenwood B (2010) Changes in the burden of malaria in sub-Saharan Africa. Lancet Infect Dis 10(8):545–555

    Article  Google Scholar 

  • Park YK et al (2008) Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci U S A 105(37):13730–13735

    Article  ADS  Google Scholar 

  • Park YK et al (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci U S A 107(4):1289–1294

    Article  ADS  Google Scholar 

  • Pauling L, Itano HA, Singer SJ, Wells IC (1949) Sickle cell anemia, a molecular disease. Science 110(2865):543–548

    Article  ADS  Google Scholar 

  • Peng GCY (2011) What biomedical engineers can do to impact multiscale modeling (TBME letters special issue on multiscale modeling and analysis in computational biology and medicine: Part-2). IEEE Trans Biomed Eng 58(12):3440–3442

    Article  Google Scholar 

  • Peng ZL et al (2013) Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc Natl Acad Sci U S A 110(33):13356–13361

    Article  ADS  Google Scholar 

  • Piel FB, Steinberg MH, Rees DC (2017) Sickle cell disease. N Engl J Med 376(16):1561–1573

    Article  Google Scholar 

  • Pivkin IV et al (2016) Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc Natl Acad Sci U S A 113(28):7804–7809

    Article  ADS  Google Scholar 

  • Quinn DJ et al (2011) Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Ann Biomed Eng 39(3):1041–1050

    Article  Google Scholar 

  • Shi H et al (2013) Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes. PLoS One 8(4):e61170

    Article  ADS  Google Scholar 

  • Sinha A, Chu TTT, Dao M, Chandramohanadas R (2015) Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress. Sci Rep 5:9768

    Google Scholar 

  • Suresh S (2007a) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438

    Article  MathSciNet  Google Scholar 

  • Suresh S (2007b) Nanomedicine – elastic clues in cancer detection. Nat Nanotechnol 2(12):748–749

    Article  ADS  Google Scholar 

  • Suresh S et al (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30

    Article  Google Scholar 

  • Tang YH et al (2017) OpenRBC: a fast simulator of red blood cells at protein resolution. Biophys J 112(10):2030–2037

    Article  Google Scholar 

  • Ware RE, de Montalembert M, Tshilolo L, Abboud MR (2017) Sickle cell disease. Lancet 390(10091):311–323

    Article  Google Scholar 

  • Wells TNC, van Huijsduijnen RH, Van Voorhis WC (2015) Malaria medicines: a glass half full? Nat Rev Drug Discov 14(6):424–442

    Article  Google Scholar 

  • Xu MJ et al (2017) A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Comput Biol 13(10):e1005746

    Article  Google Scholar 

  • Xu XF et al (2013) Probing the Cytoadherence of malaria infected red blood cells under flow. PLoS One 8(5):e64763

    Article  ADS  Google Scholar 

  • Zhang Y et al (2015) Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite. Proc Natl Acad Sci U S A 112(19):6068–6073

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from NIH Grant U01HL114476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Karniadakis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karniadakis, G.E., Dao, M. (2020). Multiscale Modeling of Diseases: Overview. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44680-6_62

Download citation

Publish with us

Policies and ethics