Skip to main content

Plastic Biodegradation: Challenges and Opportunities

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Plastics are extremely useful materials that have transformed our society in a myriad of ways. However, the widespread use of these materials has led to a staggering amount of plastic pollution in man-made and natural environments. The biodegradation of plastics is a key factor to reduce the impact of this plastic pollution. On the one hand, organisms are emerging that can degrade relatively recalcitrant plastics. On the other hand, biodegradable plastics are being developed that are intrinsically more amenable to microbial attack. In this chapter we provide an overview of the natural fates of these two types of plastics, the molecular bonds that occur in them, and the enzymatic activities associated with their degradation. Finally, an outlook is provided for the biotechnological utilization of plastics waste as a substrate, either using these enzymes or through thermochemical pretreatment.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    mcl-PHA monomer composition: C6:C8:C10:C12:C14:C16 = 6.9:58.4:26.7:6.5:1:0.5.

References

  • Abe M, Kobayashi K, Honma N, Nakasaki K (2010) Microbial degradation of poly(butylene succinate) by Fusarium solani in soil environments. Polym Degrad Stab 95:138–143

    Article  CAS  Google Scholar 

  • ACC, APR (2016) The 2015 US national postconsumer plastics bottle recycling rate report American Chemical Council & Assoc. Plastic Recyclers. https://plastics.americanchemistry.com/2015-United-States-National-Postconsumer-Plastic-Bottle-Recycling-Report.pdf. Accessed 09 Oct 2017

  • Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14:517–526

    Article  CAS  PubMed  Google Scholar 

  • Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akutsu-Shigeno Y, Adachi Y, Yamada C, Toyoshima K, Nomura N, Uchiyama H, Nakajima-Kambe T (2006) Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase. Appl Microbiol Biotechnol 70:422–429

    Article  CAS  PubMed  Google Scholar 

  • Albertsson AC, Barenstedt C, Karlsson S, Lindberg T (1995) Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer 36:3075–3083

    Article  CAS  Google Scholar 

  • Ali MI, Ahmed S, Robson G, Javed I, Ali N, Atiq N, Hameed A (2014) Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54:18–27

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Barragán J, Domínguez-Malfavón L, Vargas-Suárez M, González-Hernández R, Aguilar-Osorio G, Loza-Tavera H (2016) Biodegradative activity of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol 82:5225. https://doi.org/10.1128/aem.01344-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Araujo R, Silva C, O’Neill A, Micaelo N, Guebitz G, Soares CM, Casal M, Cavaco-Paulo A (2007) Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J Biotechnol 128:849–857

    Article  CAS  PubMed  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32:625–639

    Article  CAS  PubMed  Google Scholar 

  • Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536

    Article  CAS  Google Scholar 

  • Artham T, Sudhakar M, Venkatesan R, Nair CM, Murty KVGK, Doble M (2009) Biofouling and stability of synthetic polymers in sea water. Int Biodeterior Biodegrad 63:884–890

    Article  CAS  Google Scholar 

  • Babu RP, O'Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK (2012) Identification and comparison of cutinases for synthetic polyester degradation. Appl Microbiol Biotechnol 93:229–240

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Kannan VR (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211

    CAS  PubMed  Google Scholar 

  • Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B 364:1985–1998

    Article  CAS  Google Scholar 

  • Barth M, Oeser T, Wei R, Then J, Schmidt J, Zimmermann W (2015a) Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca. Biochem Eng J 93:222–228

    Article  CAS  Google Scholar 

  • Barth M, Wei R, Oeser T, Then J, Schmidt J, Wohlgemuth F, Zimmermann W (2015b) Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. J Membr Sci 494:182–187

    Article  CAS  Google Scholar 

  • Barth M, Honak A, Oeser T, Wei R, Belisario-Ferrari MR, Then J, Schmidt J, Zimmermann W (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • BASF SE (2017) Biodegradable and compostable packaging solutions with ecoflex®. BASF. http://www.plasticsportal.eu/ecoflex. Accessed 11 Oct 2017

  • Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654

    Article  CAS  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  CAS  PubMed  Google Scholar 

  • Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2015) Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. J Anal Appl Pyrolysis 111:55–63

    Article  CAS  Google Scholar 

  • Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651

    Article  CAS  PubMed  Google Scholar 

  • Billig S, Oeser T, Birkemeyer C, Zimmermann W (2010) Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl Microbiol Biotechnol 87:1753–1764

    Article  CAS  PubMed  Google Scholar 

  • Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293

    Article  CAS  PubMed  Google Scholar 

  • Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L et al (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770

    Article  CAS  PubMed  Google Scholar 

  • Byun Y, Cho M, Hwang S-M, Chung J (2012) Thermal plasma gasification of municipal solid waste (MSW). In: Yun Y (ed) Gasification for practical applications. InTech, Rijeka, pp 183–210

    Google Scholar 

  • Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupattelli P, Giovannozzi Sermanni G (1993) Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl Environ Microbiol 59:3695–3700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calabia BP, Tokiwa Y (2006) A novel PHB depolymerase from a thermophilic Streptomyces sp. Biotechnol Lett 28:383–388

    Article  CAS  PubMed  Google Scholar 

  • Carniel A, Valoni É, Nicomedes J, Gomes AC, Castro AM (2017) Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem 59:84–90

    Article  CAS  Google Scholar 

  • Cerrone F, Davis R, Kenny ST, Woods T, O’Donovan A, Gupta VK, Tuohy M, Babu RP, O’Kiely P, O’Connor K (2015) Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Bioresour Technol 191:45–52

    Article  CAS  PubMed  Google Scholar 

  • Chen DR, Bei JZ, Wang SG (2000) Polycaprolactone microparticles and their biodegradation. Polym Degrad Stab 67:455–459

    Article  CAS  Google Scholar 

  • Chen S, Su L, Chen J, Wu J (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31:1754–1767

    Article  CAS  PubMed  Google Scholar 

  • Choi D, Chipman DC, Bents SC, Brown RC (2010) A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 160:1032–1046

    Article  CAS  PubMed  Google Scholar 

  • Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64:1366–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852

    Article  CAS  PubMed  Google Scholar 

  • Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1275. https://doi.org/10.3389/fmicb.2015.01275

    Article  PubMed  PubMed Central  Google Scholar 

  • Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate. Biotechnol Bioeng 97:279–286

    Article  CAS  PubMed  Google Scholar 

  • Dris R, Imhof H, Sanchez W, Gasperi J, Galgani F, Tassin B, Laforsch C (2015) Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles. Environ Chem 12:539–550

    Article  CAS  Google Scholar 

  • Drzyzga O, Revelles O, Durante-Rodríguez G, Díaz E, García JL, Prieto A (2015) New challenges for syngas fermentation: towards production of biopolymers. J Chem Technol Biotechnol 90:1735–1751

    Article  CAS  Google Scholar 

  • Dürre P (2016) Butanol formation from gaseous substrates. FEMS Microbiol Lett 363. https://doi.org/10.1093/femsle/fnw040

  • Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72

    Article  PubMed  CAS  Google Scholar 

  • Eberl A, Heumann S, Bruckner T, Araujo R, Cavaco-Paulo A, Kaufmann F, Kroutil W, Guebitz GM (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143:207–212

    Article  CAS  PubMed  Google Scholar 

  • Ehara K, Iiyoshi Y, Tsutsumi Y, Nishida T (2000) Polyethylene degradation by manganese peroxidase in the absence of hydrogen peroxide. J Wood Sci 46:180–183

    Article  CAS  Google Scholar 

  • Ellen MacArthur Foundation, World Economic Forum, McKinsey & Company (2016) The new plastics economy: rethinking the future of plastics. Ellen MacARTHUR Foundation & World Economic Forum & McKinsey & Company. http://www.ellenmacarthurfoundation.org/publications. Accessed 09 Oct 2017

  • Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    Article  CAS  PubMed  Google Scholar 

  • European Bioplastics (2016) Driving the evolution of plastics. European Bioplastics, Berlin. http://docs.european-bioplastics.org/2016/association/EUBP_image_brochure.pdf. Accessed 15 Oct 2017

    Google Scholar 

  • European Commission (2017) Strategy on plastics in a circular economy – roadmap. EC. http://ec.europa.eu/smart-regulation/roadmaps/docs/plan_2016_39_plastic_strategy_en.pdf. Accessed 15 Oct 2017

  • Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Y, Arenillas A, Menendez JA (2011) Microwave heating applied to pyrolysis. In: Grundas S (ed) Advances in induction and microwave heating of mineral and organic materials. InTech, Rijcka, pp 723–752

    Google Scholar 

  • Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitteri S, Samuel G, Pichon G, Lemaire J, Delort AM (2010) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021

    Article  CAS  Google Scholar 

  • Friedrich J, Zalar P, Mohorcic M, Klun U, Krzan A (2007) Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere 67:2089–2095

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa M, Hirai H, Nishida T (2001) Degradation of polyethylene and Nylon-66 by the laccase-mediator system. J Polym Environ 9:103–108

    Article  CAS  Google Scholar 

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1:0116. https://doi.org/10.1038/s41559-017-0116

    Article  Google Scholar 

  • Gamerith C, Zartl B, Pellis A, Guillamot F, Marty A, Acero EH, Guebitz GM (2017) Enzymatic recovery of polyester building blocks from polymer blends. Process Biochem 59:58–64

    Article  CAS  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104

    CAS  Google Scholar 

  • Glass NL, Schmoll M, Cate JH, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498

    Article  CAS  PubMed  Google Scholar 

  • Goff M, Ward PG, O’Connor KE (2007) Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J Biotechnol 132:283–286

    Article  CAS  PubMed  Google Scholar 

  • Greene JP (2014) Sustainable plastics: environmental assessments of biobased, biodegradable, and recycled plastics. Wiley. https://doi.org/10.1002/9781118899595

    Book  Google Scholar 

  • Gross C, Hamacher K, Schmitz K, Jager S (2017) Cleavage product accumulation decreases the activity of cutinase during PET hydrolysis. J Chem Inf Model 57:243–255

    Article  CAS  PubMed  Google Scholar 

  • Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalization of synthetic polymers. Trends Biotechnol 26:32–38

    Article  CAS  PubMed  Google Scholar 

  • Guzik MW, Kenny ST, Duane GF, Casey E, Woods T, Babu RP, Nikodinovic-Runic J, Murray M, O’Connor KE (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl Microbiol Biotechnol 98:4223–4232

    Article  CAS  PubMed  Google Scholar 

  • GVM (2016) Aufkommen und Verwertung von PET – Getränkeflaschen in Deutschland 2015. Gesellschaft für Verpackungsmarktforschung mbH, Mainz. http://www.kunststoffverpackungen.de/show.php?ID=5961&PHPSESSID=apceu6k6r1irm4q7qff60ofp50. Accessed 15 Oct 2017

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu X, Cui H, Hai T, Joachimiak A, Golyshin PN, Savchenko A, Edwards EA, Yakunin AF (2016) Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules 17:2027–2039

    Article  CAS  PubMed  Google Scholar 

  • Hakkarainen M, Albertsson AC (2004) Environmental degradation of polyethylene. Adv Polym Sci 169:177–199

    Article  CAS  Google Scholar 

  • Herzog K, Müller RJ, Deckwer WD (2006) Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym Degrad Stab 91:2486–2498

    Article  CAS  Google Scholar 

  • Ho KLG, Pometto AL, Gadea-Rivas A, Briceno JA, Rojas A (1999) Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa State University compost rows. J Environ Polym Degrad 7:173–177

    Article  CAS  Google Scholar 

  • Horsman PV (1982) The amount of garbage pollution from merchant ships. Mar Pollut Bull 13:167–169

    Article  Google Scholar 

  • Hu X, Gao Z, Wang Z, Su T, Yang L, Li P (2016) Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polym Degrad Stab 134:211–219

    Article  CAS  Google Scholar 

  • Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44:222. https://doi.org/10.1007/bf00521967

    Article  CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DL, Hartenstein R, Sutter J (1979) Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde. Appl Environ Microbiol 38:551–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai F (2002) Microbial degradation of polyethers. Appl Microbiol Biotechnol 58:30–38

    Article  CAS  PubMed  Google Scholar 

  • Kawai F (2010) Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. In: Green polymer chemistry: biocatalysis and biomaterials. American Chemical Society, Washington, DC, pp 405–414

    Chapter  Google Scholar 

  • Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, Mizushima H, Miyakawa T, Tanokura M (2014) A novel Ca2+−activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 98:10053–10064

    Article  CAS  PubMed  Google Scholar 

  • Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, Keely CM, Blau W, O’Connor KE (2008) Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ Sci Technol 42:7696–7701

    Article  CAS  PubMed  Google Scholar 

  • Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, O’Connor KE (2012) Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 95:623–633

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45:87–97

    PubMed  Google Scholar 

  • Klemm D, Schmauder H-P, Heinze T (2002) Cellulose. In: Vandamme E, De Beats S, Steinbüchel A (eds) Biopolymers. Wiley-VCH, Weinheim, pp 290–292

    Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092

    Article  PubMed  PubMed Central  Google Scholar 

  • Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011a) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325

    Article  PubMed  CAS  Google Scholar 

  • Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011b) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koutny M, Sancelme M, Dabin C, Pichon N, Delort AM, Lemaire J (2006) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91:1495–1503

    Article  CAS  Google Scholar 

  • Krasowska K, Janik H, Gradys A, Rutkowska M (2012) Degradation of polyurethanes in compost under natural conditions. J Appl Polym Sci 125:4252–4260

    Article  CAS  Google Scholar 

  • Krueger MC, Harms H, Schlosser D (2015a) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874

    Article  CAS  PubMed  Google Scholar 

  • Krueger MC, Hofmann U, Moeder M, Schlosser D (2015b) Potential of wood-rotting Fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PLoS One 10:e0131773. https://doi.org/10.1371/journal.pone.0131773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger MC, Seiwert B, Prager A, Zhang S, Abel B, Harms H, Schlosser D (2017) Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: opportunities and limitations. Chemosphere 173:520–528

    Article  CAS  PubMed  Google Scholar 

  • Labow RS, Erfle DJ, Santerre JP (1996) Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials 17:2381–2388

    Article  CAS  PubMed  Google Scholar 

  • Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87

    Article  CAS  PubMed  Google Scholar 

  • Lebreton LCM, van der Zwet J, Damsteeg J-W, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611. https://doi.org/10.1038/ncomms15611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim S-P, Gan S-N, Tan IKP (2005) Degradation of medium-chain-length polyhydroxyalkanoates in tropical forest and mangrove soils. Appl Biochem Biotechnol 126:23. https://doi.org/10.1007/s12010-005-0003-7

    Article  CAS  PubMed  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442

    Article  CAS  PubMed  Google Scholar 

  • Lülsdorf N, Vojcic L, Hellmuth H, Weber TT, Mussmann N, Martinez R, Schwaneberg U (2015) A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution. Appl Microbiol Biotechnol 99:5237–5246

    Article  PubMed  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marten E, Müller R-J, Deckwer W-D (2003) Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab 80:485–501

    Article  CAS  Google Scholar 

  • Marten E, Müller R-J, Deckwer W-D (2005) Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym Degrad Stab 88:371–381

    Article  CAS  Google Scholar 

  • Matsumiya Y, Murata N, Tanabe E, Kubota K, Kubo M (2010) Isolation and characterization of an ether-type polyurethane-degrading micro-organism and analysis of degradation mechanism by Alternaria sp. J Appl Microbiol 108:1946–1953

    CAS  PubMed  Google Scholar 

  • Matsumura S, Harai S, Toshima K (2001) Lipase-catalyzed transformation of poly(trimethylene carbonate) into cyclic monomer, trimethylene carbonate: a new strategy for sustainable polymer recycling using an enzyme. Macromol Rapid Commun 22:215–218

    Article  CAS  Google Scholar 

  • Messenger B (2012, Nov-Dec) Is waste gasification finally coming of age? Waste Manage World 18–23

    Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation 19:851–858

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Kundu PP (2014) Alkaline fungal degradation of oxidized polyethylene in black liquor: studies on the effect of lignin peroxidases and manganese peroxidases. J Appl Polym Sci 131. https://doi.org/10.1002/app.40738

    Article  CAS  Google Scholar 

  • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller CA, Perz V, Provasnek C, Quartinello F, Guebitz GM, Berg G (2017) Discovery of polyesterases from moss-associated microorganisms. Appl Environ Microbiol 83:e02641–e02616

    Article  PubMed  PubMed Central  Google Scholar 

  • Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022

    Article  CAS  PubMed  Google Scholar 

  • Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62:456–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamiya K, Sakasita G, Ooi T, Kinoshita S (1997) Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121. J Ferment Bioeng 84:480–482

    Article  CAS  Google Scholar 

  • NatureWorks (2017) Composting Ingeo. NatureWorks LLC. http://www.natureworksllc.com/What-is-Ingeo/Where-it-Goes/Composting. Accessed 09 Oct 2017

  • Negoro S, Shibata N, Tanaka Y, Yasuhira K, Shibata H, Hashimoto H, Lee YH, Oshima S, Santa R, Oshima S, Mochiji K, Goto Y, Ikegami T, Nagai K, Kato D, Takeo M, Higuchi Y (2012) Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis. J Biol Chem 287:5079–5090

    Article  CAS  PubMed  Google Scholar 

  • Nimchua T, Punnapayak H, Zimmermann W (2007) Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi. Biotechnol J 2:361–364

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Tokiwa Y (1993) Distribution of poly(β-hydroxybutyrate) and poly(ɛ-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degr 1:227–233

    Article  CAS  Google Scholar 

  • Oeser T, Wei R, Baumgarten T, Billig S, Follner C, Zimmermann W (2010) High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J Biotechnol 146:100–104

    Article  CAS  PubMed  Google Scholar 

  • Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl-chloride, and urea-formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 56:1789–1796

    Article  CAS  Google Scholar 

  • Phua SK, Castillo E, Anderson JM, Hiltner A (1987) Biodegradation of a polyurethane in vitro. J Biomed Mater Res 21:231–246

    Article  CAS  PubMed  Google Scholar 

  • PlasticsEurope (2016) Plastics – the facts 2016. Düsseldorf. http://www.plasticseurope.org. Accessed 13 Oct 2017

  • Pometto AL III, Lee BT, Johnson KE (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58:731–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pruter AT (1987) Sources, quantities and distribution of persistent plastics in the marine environment. Mar Pollut Bull 18:305–310

    Article  CAS  Google Scholar 

  • Rajandas H, Parimannan S, Sathasivam K, Ravichandran M, Yin LS (2012) A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polym Test 31:1094–1099

    Article  CAS  Google Scholar 

  • Restrepo-Flórez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene - a review. Int Biodeterior Biodegrad 88:83–90

    Article  CAS  Google Scholar 

  • Revelles O, Beneroso D, Menéndez JA, Arenillas A, García JL, Prieto MA (2016a) Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum. Microb Biotechnol 10:1412. https://doi.org/10.1111/1751-7915.12411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revelles O, Tarazona N, García JL, Prieto MA (2016b) Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum. Environ Microbiol 18:708–720

    Article  CAS  PubMed  Google Scholar 

  • Rhee YH, Kim YH, Shin K-S (2006) Characterization of an extracellular poly(3-hydroxyoctanoate) depolymerase from the marine isolate, Pseudomonas luteola M13-4. Enzym Microb Technol 38:529–535

    Article  CAS  Google Scholar 

  • Ribitsch D, Heumann S, Trotscha E, Herrero Acero E, Greimel K, Leber R, Birner-Gruenberger R, Deller S, Eiteljoerg I, Remler P, Weber T, Siegert P, Maurer KH, Donelli I, Freddi G, Schwab H, Guebitz GM (2011) Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 27:951–960

    Article  CAS  PubMed  Google Scholar 

  • Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  CAS  Google Scholar 

  • Ruiz C, Main T, Hilliard NP, Howard GT (1999) Purification and characterization of two polyurethanase enzymes from Pseudomonas chlororaphis. Int Biodeterior Biodegrad 43:43–47

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martinez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger L-A, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PG, Moore CJ, van Franeker JA, Moloney CL (2009) Monitoring the abundance of plastic debris in the marine environment. Philos Trans R Soc B 364:1999–2012

    Article  CAS  Google Scholar 

  • Santana VT, Goncalves SPC, Agnelli JAM, Martins-Franchetti SM (2012) Biodegradation of a polylactic acid/polyvinyl chloride blend in soil. J Appl Polym Sci 125:536–540

    Article  CAS  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210

    Article  CAS  Google Scholar 

  • Schmidt J, Wei R, Oeser T, Belisário-Ferrari MR, Barth M, Then J, Zimmermann W (2016) Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio 6:919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt J, Wei R, Oeser T, Dedavid e Silva L, Breite D, Schulze A, Zimmermann W (2017) Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymer 9:65. https://doi.org/10.3390/polym9020065

    Article  CAS  Google Scholar 

  • Shah Z, Krumholz L, Aktas DF, Hasan F, Khattak M, Shah AA (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation 24:865–877

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki Y, Morita T, Cao XH, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto HK (2013) Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol 97:2951–2959

    Article  CAS  PubMed  Google Scholar 

  • Sielicki M, Focht DD, Martin JP (1978) Microbial degradation of [14C]polystyrene and 1,3-diphenylbutane. Can J Microbiol 24:798–803

    Article  CAS  PubMed  Google Scholar 

  • Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    Article  CAS  PubMed  Google Scholar 

  • Sridewi N, Bhubalan K, Sudesh K (2006) Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab 91:2931–2940

    Article  CAS  Google Scholar 

  • Succinity (2016) Biobased polybutylene succinate (PBS) – an attractive polymer for biopolymer compounds. Succinity GmbH & Nova-Institute. http://www.succinity.com/images/succinity_broschure.pdf. Accessed 09 Oct 2017

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suyama T, Tokiwa Y (1997) Enzymatic degradation of an aliphatic polycarbonate, poly(tetramethylene carbonate). Enzym Microb Technol 20:122–126

    Article  CAS  Google Scholar 

  • Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanigaki N, Fujinaga Y, Kajiyama H, Ishida Y (2013) Operating and environmental performances of commercial-scale waste gasification and melting technology. Waste Manage Res 31:1118–1124

    Article  CAS  Google Scholar 

  • Then J, Wei R, Oeser T, Barth M, Belisário-Ferrari MR, Schmidt J, Zimmermann W (2015) Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol J 10:592–598

    Article  CAS  PubMed  Google Scholar 

  • Then J, Wei R, Oeser T, Gerdts A, Schmidt J, Barth M, Zimmermann W (2016) A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio 6:425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirunavukarasu K, Purushothaman S, Sridevi J, Aarthy M, Gowthaman MK, Nakajima-Kambe T, Kamini NR (2016) Degradation of poly(butylene succinate) and poly(butylene succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. Int Biodeterior Biodegrad 110:99–107

    Article  CAS  Google Scholar 

  • Tokiwa Y, Pranamuda H (2002) Microbial degradation of polyesters. In: Steinbüchel A, Doi Y (eds) Polyesters II: properties and chemical synthesis. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J Appl Polym Sci 26:441–448

    Article  CAS  Google Scholar 

  • Tsuji H (2002) Polylactides. In: Steinbüchel A, Doi Y (eds) Biopolymers: polyesters III. Wiley-VCH, Weinheim, pp 129–177

    Google Scholar 

  • UNESCO (1994) Marine debris: solid waste management action plan for the wider Caribbean. IOC Technical series, vol 41. UNESCO, Paris

    Google Scholar 

  • US EPA (2016) Advancing sustainable materials management: 2014 fact sheet. US EPA, Office of Land and Emergency Management, Washington, DC. Report: EPA530-R-17-01

    Google Scholar 

  • Vertommen MAME, Nierstrasz VA, Veer M, Warmoeskerken MMCG (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386

    Article  CAS  PubMed  Google Scholar 

  • Volke-Sepulveda T, Saucedo-Castaneda G, Gutierrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314

    Article  CAS  Google Scholar 

  • Volova TG, Prudnikova SV, Vinogradova ON, Syrvacheva DA, Shishatskaya EI (2017) Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability. Microb Ecol 73:353–367

    Article  CAS  PubMed  Google Scholar 

  • Walsh M, O’Connor K, Babu R, Woods T, Kenny S (2015) Plant oils and products of their hydrolysis as substrates for polyhydroxyalkanoate synthesis. Chem Biochem Eng Q 29:123–133

    Article  CAS  Google Scholar 

  • Wang GB, Labow RS, Santerre JP (1997) Biodegradation of a poly(ester)urea-urethane by cholesterol esterase: isolation and identification of principal biodegradation products. J Biomed Mater Res 36:407–417

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-W, Mo W, Yao H, Wu Q, Chen J, Chen G-Q (2004) Biodegradation studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym Degrad Stab 85:815–821

    Article  CAS  Google Scholar 

  • Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    Article  CAS  Google Scholar 

  • Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437

    Article  CAS  PubMed  Google Scholar 

  • Wei R, Zimmermann W (2017a) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10:1308–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei R, Zimmermann W (2017b) Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol 10:1302–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei R, Oeser T, Barth M, Weigl N, Lübs A, Schulz-Siegmund M, Hacker MC, Zimmermann W (2014a) Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles. J Mol Catal B Enzym 103:72–78

    Article  CAS  Google Scholar 

  • Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, Zimmermann W (2014b) Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 4:44. https://doi.org/10.1186/s13568-014-0044-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei R, Oeser T, Zimmermann W (2014c) Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. Adv Appl Microbiol 89:267–305

    Article  PubMed  Google Scholar 

  • Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, Zimmermann W (2016) Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng 113:1658–1665

    Article  CAS  PubMed  Google Scholar 

  • White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins MR, Atiyeh HK (2011) Microbial production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:326–330

    Article  CAS  PubMed  Google Scholar 

  • Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299

    Article  CAS  PubMed  Google Scholar 

  • Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer – polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  • World Economic Forum, Ellen MacArthur Foundation, McKinsey & Company (2015) Project MainStream – a global collaboration to accelerate the transition towards the circular economy. World Economic Forum, Geneva. REF 041214

    Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    Article  CAS  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015a) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49:12087–12093

    Article  CAS  PubMed  Google Scholar 

  • Yoon MG, Jeon HJ, Kim NM (2012) Biodegradation of polyethylene by a soil bacterium and alkB cloned recombinant cell. J Bioremed Biodegrad 3:145. https://doi.org/10.4172/2155-6199.1000145

  • Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu H, Zheng L, Zhang J, Du Y, Feng H (1996) Biodegradability of regenerated cellulose films in soil. Ind Eng Chem Res 35:4682–4685

    Article  CAS  Google Scholar 

  • Zhang Q, Dor L, Fenigshtein D, Yang W, Blasiak W (2012) Gasification of municipal solid waste in the plasma gasification melting process. Appl Energy 90:106–112

    Article  CAS  Google Scholar 

  • Zimmermann W, Billig S (2011) Enzymes for the biofunctionalization of poly(ethylene terephthalate). Adv Biochem Eng Biotechnol 125:97–120

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 633962 for the project P4SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Wierckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wierckx, N. et al. (2018). Plastic Biodegradation: Challenges and Opportunities. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-44535-9_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44535-9_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44535-9

  • Online ISBN: 978-3-319-44535-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics