Skip to main content

Nonlinear Mixed Effects Modeling in Systems Pharmacology

  • Chapter
  • First Online:
Systems Pharmacology and Pharmacodynamics

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 23))

  • 2550 Accesses

Abstract

Quantitative systems pharmacology (QSP) is the design and application of mathematical models to explain how drugs function at a systems level. Whereas traditional pharmacokinetic-pharmacodynamic modeling takes an empirical or mechanistic approach to modeling, QSP takes a holistic approach exploring whole biochemical and metabolic pathways and how drugs interact in those pathways. These models are often unidentifiable from any single set of data. Instead they are built using diverse datasets with many parameters fixed to mean values from different experiments resulting in models that are over-confident in their parameter values. Few models currently take into account these sources of variability in their parameter estimation. This chapter discusses nonlinear mixed effects models , a modeling approach that specifically accounts for sources of variability in a model, and their application to QSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarons L (1991) The kinetics of flurbiprofen in synovial fluid. J Pharmacokinet Biopharm 19:265–269

    Article  CAS  PubMed  Google Scholar 

  • Aldrich JRA (1997) Fisher and the making of maximum likelihood 1912–1922. Stat Sci 12:162–176

    Article  Google Scholar 

  • Bender G, Gosset J, Florian J, Tan K, Field M, Marshall S, DeJongh J, Bies R, Danhof M (2009) Population pharmacokinetic model of the pregabalin-sildenafil interaction in rats: application of simulation to preclinical PK–PD study design. Pharm Res 26:2259–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeckmann AJ, Sheiner LB, Beal SL (2006) NONMEM users guide (1989–2006). ICON Development Solutions, Ellicott City

    Google Scholar 

  • Bonate PL (2011) Pharmacokinetic–pharmacodynamic modeling and simulation. Springer, New York

    Book  Google Scholar 

  • Boulemery A, Marsot A, Bruguerolle B, Simon B (2013) Population pharmacokinetics of ertapenem in juvenile and old rats. Fundam Clin Pharmacol 28:144–150

    Article  Google Scholar 

  • Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10:201–227

    Article  CAS  PubMed  Google Scholar 

  • Campos-Moreno E, Merino-Sanjuan M, Merino V, Martin Algarra RV, Casabom VG (1997) Population modeling to describe pharmacokinetics of amiodarone in rats: relevance of plasma protein and tissue depot binding. Eur J Pharm Sci 30:190–197

    Article  Google Scholar 

  • Chis OT, Banga JR, Balsa-Canto E (2011) Structural identifiability of system biology models: a critical comparison of methods. PLOS One 6:e27725

    Article  Google Scholar 

  • Danhof M, de Jongh J, De Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  CAS  PubMed  Google Scholar 

  • Davidian M, Giltinan DM (1995) Nonlinear models for repeated measures data. Chapman and Hall, New York

    Google Scholar 

  • Degon M, Chipkin SR, Hollot CV, Zoeller RT, Chait Y (2008) A computational model of the human thyroid. Math Biosci 212:22–53

    Article  CAS  PubMed  Google Scholar 

  • Ekerot P, Ferguson D, Glamsta EL, Nilsson LB, Andersson H, Rosqvist S, Visser SA (2013) Systems pharmacology of modeling of drug-induced modulation of thyroid hormone in dogs and translation to humans. Pharm Res 30:1513–1524

    Article  CAS  PubMed  Google Scholar 

  • Fitzmaurice GM, Laird NM, Ware JH (2004) Applied longitudinal analysis. Wiley, New York

    Google Scholar 

  • Freise KJ, Linton DD, Newbound DC, Tudan C, Clark TP (2012) Population pharmacokinetics of transdermal fentanyl solution following a single dose administered prior to soft tissue and orthopedic surgery in dogs. J Vet Pharmacol Ther 35(Suppl 2):65–72

    Article  CAS  PubMed  Google Scholar 

  • Gabrielsson J, Weiner D (2000) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  • Gastonguay MR (2011) Full covariate models as an alternative to methods relying on statistical significance for inferences about covariate effects: a review of methodology and 42 case studies. Presented at the population analysis group in Europe, Greece (Abstract 2229)

    Google Scholar 

  • Holford NHG (1996) A size standard for pharmacokinetics. Clin Pharmacokinet 30:329–332

    Article  CAS  PubMed  Google Scholar 

  • Jensen ML, Foster DJR, Upton RN, Kresitensen K, Hansen SH, Jensen NH, Nielsen BN, Skram U, Villesen HH, Christup L (2007) Population pharmacokinetics of buprenorphine following a two-stage intravenous infusion in healthy volunteers. Eur J Clin Pharmacol 63:1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Kaneda K, Han TH (2005) Comparative pharmacokinetics of fentanyl using nonlinear mixed effects modeling: burns vs. non-burns. Burns 35:790–797

    Article  Google Scholar 

  • Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49:1020–1038

    Article  Google Scholar 

  • Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interaction between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 7:293–309

    Article  Google Scholar 

  • Lepist EI, Jusko WJ (2004) Modeling and allometric scaling of s(+)-ketoprofen pharmacokinetics and pharmacodynamics: a retrospective analysis. J Pharmacol Exp Ther 27:211–218

    Google Scholar 

  • Mager DE, Woo S, Jusko WJ (2009) Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 24:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood I (2006) Prediction of drug clearance in children from adults: a comparison of several allometric methods. Br J Clin Pharmacol 61:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melham M (2013) Translation of CNS occupancy from animal models: application of pharmacokinetic/pharmacodynamic modeling. J Pharmacol Exp Ther 347:2–6

    Article  Google Scholar 

  • Morris CA, Tan B, Dupare S, Borghini-Fuhrer I, Jung D, Shin CS, Fleckstein L (2013) Effects of body size and gender on the population pharmacokinetics of artesunate and its active metabolite dihydroartesunate in pediatric malaria patients. Antimicrob Agents Chemother 57:5889–5890

    Article  PubMed  PubMed Central  Google Scholar 

  • Mu S, Anderson S, Mahadevan S (2004) Evaluate human PK prediction of compound LY based on elementary scaling with three species. Clin Pharmacol Ther 75:P30

    Article  Google Scholar 

  • Nichols AI, Boudinot FD, Jusko WJ (1989) Second generation model for prednisolone pharmacodynamics in the rat. J Pharmacokinet Biopharm 17:290–297

    Article  Google Scholar 

  • Peterson MC, Riggs MM (2010) A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46:49–63

    Article  CAS  PubMed  Google Scholar 

  • Post TM, Schmidt S, Peletier LA, de Greef R, Kerbusch T, Danhof M (2013) Application of mechanism-based disease systems modeling for osteoporosis to clinical data. J Pharmacokinet Pharmacodyn 40:143–156

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ (2002) Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Biopharm 29:1–24

    Article  CAS  Google Scholar 

  • Robbie GJ, Zhae L, Mondick J, Lesensky G, Roskos LK (2012) Population pharmacokinetics of palvizumab, a humanized anti-respiratory syncytial monoclonal antibody, in adults and children. Antimicrob Agents Chemother 56:4927–4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SAS Institute (2009) SAS/STAT 9.2 user’s guide. SAS Institute, Cary

    Google Scholar 

  • Schmidt S, Post TM, Peletier LA, Beroujerdi MA, Danhof M (2011) Coping with time scales in disease systems analysis: application to bone remodeling. J Pharmacokinet Pharmacodyn 38:873–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8:553–571

    Article  CAS  PubMed  Google Scholar 

  • Sheiner LB, Beal SL (1981) Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm 9:635–651

    Article  CAS  PubMed  Google Scholar 

  • Sheiner LB, Beal SL (1983) Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 11:303–319

    Article  CAS  PubMed  Google Scholar 

  • Shoji S, Suzuki M, Tomono Y, Brockbrader HN, Matsui S (2011) Population pharmacokinetics of pregabalin in healthy subjects and patients with postherpetic neuralgia or diabetic neuropathic pain. Br J Clin Pharmacol 72:63–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha VK, De Buck SS, Fenu LA, Smit JW, Nijsen M, Gilissen RAHJ, Van Peer A, Labrijsen K, Mackie CE (2008) Predicting oral clearance in humans: how close can we get with allometry? Clin Pharmacokinet 47:35–45

    Article  CAS  PubMed  Google Scholar 

  • Sun YN, DuBois DC, Almon RR, Jusko WJ (1998) Fourth generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor/gene glucocorticoid receptor down regulation and tyrosine aminotransferase induction in rat liver. J Pharmacokinet Biopharm 289:317

    Google Scholar 

  • United States Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, and Center for Biologics Evaluation and Research (1999) Guidance for industry: population pharmacokinetics

    Google Scholar 

  • Upton RN, Mould DR (2014) Basic concepts in population modeling, simulation, and model-based drug development: part 3, introduction to pharmacodynamic modeling methods. CPT Syst Pharmacol Pharmacomet 3:e88

    Article  CAS  Google Scholar 

  • Vadiei K, Troy S, Korth-Bradley J, Chiang ST, Zimmerman JJ (1997) Population pharmacokinetics of intravenous amiodarone and comparison with two-stage pharmacokinetic analysis. J Clin Pharmacol 37:610–617

    Article  CAS  PubMed  Google Scholar 

  • van der Graaf PH, van Schaick EA, Mathot RA, Ijzerman AP, Danhof M (1997) Mechanism-based pharmacokinetic-pharmacodynamic modeling of the effects of N6-cyclopentyladenosine analogs on heart rate: estimation of in vivo operational affinity and efficacy at A1 receptors. J Pharmacol Exp Ther 283:809–816

    Google Scholar 

  • Wang Y (2009) Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn 34:575–593

    Article  CAS  Google Scholar 

  • Wright PMC (1998) Population based pharmacokinetic analyses: why do we need it; what is it; what has it told us about anesthetics? Br J Anaesth 80:488–501

    Article  CAS  PubMed  Google Scholar 

  • Wu SP, Feng S (2011) Interspecies pharmacokinetic scaling of dasatinib—an application of nonlinear mixed effects modeling. Presented at the American conference on pharmacometrics, Las Vegas

    Google Scholar 

  • Xu ZX, Sun YN, DuBois D, Almon RR, Jusko WJ (1995) Second generation model for corticosteroid pharmacodynamics: roles of the glucocorticoid receptor mRNA and tyrosine aminotransferase mRNA in rat liver. J Pharmacokinet Biopharm 23:163–181

    Article  CAS  PubMed  Google Scholar 

  • Yassen A, Olofsen E, Kan J, Dahan A, Danhof M (2007) Pharmacokinetic-pharmacodynamic modeling of the effectiveness and safety of buprenorphine and fentanyl in rats. Pharm Res 25:183–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuideveld KP, van der Graaf PH, Peletier LA, Danhof M (2007) Allometric scaling of pharmacodynamic responses: application to 5-HT1a receptor-mediated responses from rat to man. Pharm Res 24:2031–2039

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Bonate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Bonate, P.L., Desai, A., Rizwan, A., Lu, Z., Tannenbaum, S. (2016). Nonlinear Mixed Effects Modeling in Systems Pharmacology. In: Mager, D., Kimko, H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-44534-2_12

Download citation

Publish with us

Policies and ethics