Skip to main content

New Insights in Plant-Associated Paenibacillus Species: Biocontrol and Plant Growth-Promoting Activity

  • Chapter
  • First Online:
Book cover Bacilli and Agrobiotechnology

Abstract

A wide number of new species have been included in recent years in the Paenibacillus genus, prompting to a new ecological and biotechnological appraisal of Paenibacillus bacteria. Several species are involved in plant growth promotion and biocontrol, and a few of them have also been reported to cause human infections. Some isolates of the genus Paenibacillus are among the most efficient microbial biocontrol agents, and some strains have been included in formulations that have been granted a patent to control plant pathogens. A strain belonging to the species Paenibacillus lentimorbus has recently been described as a potent plant growth-promoting and bioremediation agent in Cr-contaminated rhizosphere soil. Nitrogen fixation has been described in several species, and some of these bacteria are promising candidates for crop inoculation. Fourteen complete genome sequences are publicly available so far. Five of them belong to Paenibacillus polymyxa strains that have been isolated from crop rhizosphere and show traits related to plant growth promotion. Recently, the draft genome sequence of Paenibacillus riograndensis strain SBR5T, which in addition to nitrogen fixation has shown several plant growth-promoting traits, has been published.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaracharanya, A., Lorliam, W., Tanasupawat, S., Lee, K. C., & Lee, J. S. (2009). Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. International Journal of Systematic and Evolutionary Microbiology, 59, 2680–2684.

    Article  CAS  PubMed  Google Scholar 

  • Ait Kaki, A., Kacem Chaouche, N., Dehimat, L., Milet, A., Youcef-Ali, M., Ongena, M., & Thonart, P. (2013). Biocontrol and plant growth promotion characterization of Bacillus species isolated from Calendula officinalis rhizosphere. Indian Journal of Microbiology, 53, 447–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alon, U. (2006). An introduction to systems biology: Design principles of biological circuits. London: CRC Press.

    Google Scholar 

  • Altena, K., Guder, A., Cramer, C., & Bierbaum, G. (2000). Biosynthesis of the lantibiotic mersacidin: Organization of a type B lantibiotic gene cluster. Applied and Environmental Microbiology, 66, 2565–2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand, R., & Chanway, C. P. (2013a). Detection of GFP-labeled Paenibacillus polymyxa in autofluorescing pine seedling tissues. Biology and Fertility of Soils, 49, 111–118.

    Article  CAS  Google Scholar 

  • Anand, R., & Chanway, C. P. (2013b). N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biology and Fertility of Soils, 49, 235–239.

    Article  CAS  Google Scholar 

  • Anand, R., Grayston, S., & Chanway, C. (2013). N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microbial Ecology, 66, 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Anandaraj, B., Vellaichamy, A., Kachman, M., Selvamanikandan, A., Pegu, S., & Murugan, V. (2009). Co-production of two new peptide antibiotics by a bacterial isolate Paenibacillus alvei NP75. Biochemical and Biophysical Research Communications, 379, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Annapurna, K., Ramadoss, D., Bose, P., & VithalKumar, L. (2013). In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max.L.). Plant and Soil, 373, 641–648.

    Article  CAS  Google Scholar 

  • Antonopoulos, D. F., Tjamos, S. E., Antoniou, P. P., Rafeletos, P., & Tjamos, E. C. (2008). Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biological Control, 46, 166–170.

    Article  Google Scholar 

  • Ash, C., Priest, F. G., & Collins, M. D. (1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek, 64, 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Ashiralieva, A., & Genersch, E. (2006). Reclassification, genotypes and virulence of Paenibacillus larvae, the etiological agent of American foulbrood in honeybees – A review. Apidologie, 37, 411–420.

    Article  Google Scholar 

  • Baik, K. S., Choe, H. N., Park, S. C., Kim, E. M., & Seong, C. N. (2011). Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. International Journal of Systematic and Evolutionary Microbiology, 61, 2763–2768.

    Article  CAS  PubMed  Google Scholar 

  • Bal, A. S., Anand, R., Berge, O., & Chanway, C. P. (2012). Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Canadian Journal of Forest Research, 42, 807–813.

    Article  CAS  Google Scholar 

  • Bal, A. S., & Chanway, C. P. (2012a). Evidence of nitrogen fixing bacterium in lodgepole pine inoculated with Paenibacillus polymyxa. Botany, 90, 891–896.

    Article  CAS  Google Scholar 

  • Bal, A. S., & Chanway, C. P. (2012b).15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biology and Fertility of Soils, 48, 967–971.

    Article  Google Scholar 

  • Beneduzi, A., Campos, S., Ambrosini, A., de Souza, R., Granada, C., Costa, P., Arruda, L., Moreira, F., Vargas, L. K., Weiss, V., Tieppo, E., Faoro, H., de Souza, E. M., Pedrosa, F. O., & Passaglia, L. M. (2011). Genome sequence of the diazotrophic Gram-positive rhizobacterium Paenibacillus riograndensis sBR5(T). Journal of Bacteriology, 193, 6391–6392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berge, O., Guinebretiere, M. H., Achouak, W., Normand, P., & Heulin, T. (2002). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. International Journal of Systematic and Evolutionary Microbiology, 52, 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo, M., & Molina, A. (2008). Arabidopsis defense response against Fusarium oxysporum. Trends in Plant Science, 13, 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Beatty, P. H., & Jensen, S. E. (2002). Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 48, 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Bouraoui, H., Rebib, H., Ben Aissa, M., Touzel, J. P., O’donohue, M., & Manai, M. (2013). Paenibacillus marinum sp. nov., a thermophilic xylanolytic bacterium isolated from a marine hot spring in Tunisia. Journal of Basic Microbiology, 53, 877–883.

    Article  CAS  PubMed  Google Scholar 

  • Bosshard, P. P., Zbinden, R., & Altwegg, M. (2002). Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. International Journal of Systematic and Evolutionary Microbiology, 52, 2241–2249.

    CAS  PubMed  Google Scholar 

  • Budi, S. W., van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V., & Gianinazzi, S. (2000). Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Applied Soil Ecology, 15, 191–199.

    Article  Google Scholar 

  • Carro, L., Flores-Felix, J. D., Cerda-Castillo, E., Ramirez-Bahena, M. H., Igual, J. M., Tejedor, C., Velazquez, E., & Peix, A. (2013). Paenibacillus endophyticus sp.nov., isolated from nodules of Cicer arietinum in Spain. International Journal of Systematic and Evolutionary Microbiology, 63, 4433–4438.

    Article  CAS  PubMed  Google Scholar 

  • Charalambous, A., Tjamos, S. E., Domazakis, E., & Paplomatas, E. J. (2013). Incorporation into the transplant soil plug of the plant protective agent Paenibacillus alvei strain K165 confers protection to melon against Fusarium wilt. BioControl, 58, 685–692.

    Article  CAS  Google Scholar 

  • Chaudhry, V., Chauhan, P. S., Mishra, A., Goel, R., Asif, M. H., Mantri, S. S., Bag, S. K., Singh, S. K., Sawant, S. V., & Nautiyal, C. S. (2013). Insights from the draft genome of Paenibacillus lentimorbus NRRL B-30488, a promising plant growth promoting bacterium. Journal of Biotechnology, 168, 737–738.

    Article  CAS  PubMed  Google Scholar 

  • Cheong, H., Park, S.-Y., Ryu, C.-M., Kim, J. F., Park, S.-H., & Park, C. S. (2005). Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. Journal of Microbiology and Biotechnology, 15, 1286–1298.

    CAS  Google Scholar 

  • Choi, J. H., Im, W. T., Yoo, J. S., Lee, S. M., Moon, D. S., Kim, H. J., Rhee, S. K., & Roh, D. H. (2008a). Paenibacillus donghaensis sp. nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. Journal of Microbiology and Biotechnology, 18, 189–193.

    CAS  PubMed  Google Scholar 

  • Choi, S. K., Park, S. Y., Kim, R., Lee, C. H., Kim, J. F., & Park, S. H. (2008b). Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochemical and Biophysical Research Communications, 365, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S. K., Park, S. Y., Kim, R., Kim, S. B., Lee, C. H., Kim, J. F., & Park, S. H. (2009). Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. Journal of Bacteriology, 191, 3350–3358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology, 47, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Chow, V., Nong, G., St John, F. J., Rice, J. D., Dickstein, E., Chertkov, O., Bruce, D., Detter, C., Brettin, T., Han, J., Woyke, T., Pitluck, S., Nolan, M., Pati, A., Martin, J., Copeland, A., Land, M. L., Goodwin, L., Jones, J. B., Ingram, L. O., Shanmugam, K. T., & Preston, J. F. (2012). Complete genome sequence of Paenibacillus sp. strain JDR-2. Standards in Genomic Sciences, 6, 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daane, L. L., Harjono, I., Barns, S. M., Launen, L. A., Palleroni, N. J., & Haaggblom, M. M. (2002). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. International Journal of Systematic and Evolutionary Microbiology, 52, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • da Mota, F. F., Gomes, E. A., Paiva, E., & Seldin, L. (2005). Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiology Ecology, 53, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Das, S. N., Dutta, S., Kondreddy, A., Chilukoti, N., Pullabhotla, S. V. S. R. N., Vadlamudi, S., & Podile, A. R. (2010). Plant growth-promoting chitinolytic Paenibacillus elgii Responds positively to tobacco root exudates. Journal of Plant Growth Regulation, 29, 409–418.

    Article  CAS  Google Scholar 

  • DasGupta, S. M., Khan, N., & Nautiyal, C. S. (2006). Biologic control ability of plant growth-promoting Paenibacillus lentimorbus NRRL B-30488 isolated from milk. Current Microbiology, 53, 502–505.

    Article  CAS  PubMed  Google Scholar 

  • Debois, D., Ongena, M., Cawoy, H., & De Pauw, E. (2013). MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. Journal of the American Society for Mass Spectrometry, 24, 1202–1213.

    Article  CAS  PubMed  Google Scholar 

  • de Jong, A., Van Heel, A. J., Kok, J., & Kuipers, O. P. (2010). BAGEL2: Mining for bacteriocins in genomic data. Nucleic Acids Research, 38, W647–W651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding, R., Li, Y., Qian, C., & Wu, X. (2011). Draft genome sequence of Paenibacillus elgii B69, a strain with broad antimicrobial activity. Journal of Bacteriology, 193, 4537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijksterhuis, J., Sanders, M., Gorris, L. G. M., & Smid, E. J. (1999). Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. Journal of Applied Microbiology, 86, 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Eastman, A. W., Heinrichs, D. E., & Yuan, Z.-E. (2014). Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa Genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genomics, 15, 851–872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elo, S., Suominen, I., Kampfer, P., Juhanoja, J., Salkinoja-Salonen, M., & Haahtela, K. (2001). Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. International Journal of Systematic and Evolutionary Microbiology, 51, 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Faria, D. C., Dias, A. C. F., Melo, I. S., & de Carvalho Costa, F. E. (2013). Endophytic bacteria isolated from orchid and their potential to promote plant growth. World Journal of Microbiology and Biotechnology, 29, 217–221.

    Article  PubMed  Google Scholar 

  • Galperin, M. Y., & Gomelsky, M. (2005). Bacterial signal transduction modules: From genomics to biology. ASM News, 71, 326–333.

    Google Scholar 

  • Gao, M., Xie, L. Q., Wang, Y. X., Chen, J., Xu, J., Zhang, X. X., Sui, X. H., Gao, J. L., & Sun, J. G. (2012). Paenibacillus beijingensis sp. nov., a novel nitrogen-fixing species isolated from jujube garden soil. Antonie Van Leeuwenhoek, 102, 689–694.

    Article  CAS  PubMed  Google Scholar 

  • Gao, T., & Liao, M. (2014). Suppression of Rhizoctonia solani and induction of host plant resistance by Paenibacillus kribbensis PS04 towards controlling of rice sheath blight. Biocontrol Science and Technology, 24, 116–121.

    Article  Google Scholar 

  • Gao, Y., Liu, Q., Zang, P., Li, X., Ji, Q., He, Z., Zhao, Y., Yang, H., Zhao, X., & Zhang, L. (2015). An endophytic bacterium isolated from Panax ginseng C.A. Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochemistry Letters, 11, 132–138.

    Article  CAS  Google Scholar 

  • Giamarellou, H., & Poulakou, G. (2009). Multidrug-resistant gram-negative infections: What are the treatment options? Drugs, 69, 1879–1901.

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V., & Annapurna, K. (2011). Bacillus and Paenibacillus spp. potential PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 333–364). Berlin: Springer.

    Google Scholar 

  • He, Z., Kisla, D., Zhang, L., Yuan, C., Green-Church, K. B., & Yousef, A. E. (2007). Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Applied and Environmental Microbiology, 73, 168–178.

    Article  CAS  PubMed  Google Scholar 

  • Helbig, J. (2001). Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa(Isolate18191). Journal of Phytopathology, 149, 265–273.

    Article  Google Scholar 

  • Hildebrandt, U., Ouziad, F., Marner, F. J., & Bothe, H. (2006). The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiology Letters, 254, 258–267.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Y. Y., Ma, Y. C., Zhou, Y. G., Gao, F., Liu, H. C., & Chen, S. F. (2009). Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. International Journal of Systematic and Evolutionary Microbiology, 59, 2656–2661.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S. H., Anees, M., & Kim, K. Y. (2013). Biocontrol of Meloydogine incognita inciting disease in tomato by using a mixed compost inoculated with Paenibacillus ehimensis RS820. Biocontrol Science and Technology, 23, 1024–1039.

    Article  Google Scholar 

  • Hoshino, T., Nakabayashi, T., Hirota, K., Matsuno, T., Koiwa, R., Fujiu, S., Saito, I., Tkachenko, O. B., Matsuyama, H., & Yumoto, I. (2009). Paenibacillus macquariensis subsp. defensor subsp. nov., isolated from boreal soil. International Journal of Systematic and Evolutionary Microbiology, 59, 2074–2079.

    Article  CAS  PubMed  Google Scholar 

  • Huang, E., & Yousef, A. E. (2012). Draft genome sequence of Paenibacillus polymyxa OSY-DF, which coproduces a lantibiotic, paenibacillin, and polymyxin E1. Journal of Bacteriology, 194, 4739–4740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Z., Hu, Y., Shou, L., & Song, M. (2013). Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiology, 13, 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X. F., Gao, Y. Y., Fang, Q. L., Wu, J. G., & Chen, J. S. (2008). Effect of ion implantation on B. mucilaginosus KNP414 and screening for mutants with higher release of phosphate and potassium. Acta Agriculturae Nucleatae Sinica, 22, 420–425.

    CAS  Google Scholar 

  • Hwang, I. T., Park, N. J., Lim, H. K., Cho, S. J. (2011). A Paenibacillus sp. HPL-003 strain for producing xylanase and a thermostable, wide pH spectrum, and highly active xylanase produced thereby and a transgenic mass-producing method thereof. Patent no. PCT/KR2011/005966.

    Google Scholar 

  • Jeong, H., Choi, S.-K., Park, S.-Y., Kim, S. H., & Park, S.-H. (2012). Draft genome sequence of Paenibacillus peoriae strain KCTC 3763T. Journal of Bacteriology, 194, 1237–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, H., Park, S. Y., Chung, W. H., Kim, S. H., Kim, N., Park, S. H., & Kim, J. F. (2011). Draft genome sequence of the Paenibacillus polymyxa type strain (ATCC 842T), a plant growth-promoting bacterium. Journal of Bacteriology, 193, 5026–5027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, B. H., Liu, J. L., & Hu, X. M. (2013). Draft genome sequence of the efficient bioflocculant-producing bacterium Paenibacillus sp. strain A9. Genome Announcements, 25(1), e0013113.

    Google Scholar 

  • Jin, H. J., LV, J., & Chen, S. F. (2011a). Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. International Journal of Systematic and Evolutionary Microbiology, 61, 767–771.

    Article  CAS  PubMed  Google Scholar 

  • Jin, H. J., Zhou, Y. G., Liu, H. C., & Chen, S. F. (2011b). Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. International Journal of Systematic and Evolutionary Microbiology, 61, 1350–1355.

    Article  PubMed  Google Scholar 

  • Kadyan, S., Panghal, M., Kumar, S., Singh, K., & Yadav, J. P. (2013). Assessment of functional and genetic diversity of aerobic endospore forming Bacilli from rhizospheric soil of Phyllanthus amarus L. World Journal of Microbiology and Biotechnology, 29, 1597–1610.

    Article  CAS  PubMed  Google Scholar 

  • Ker, K., Seguin, P., Driscoll, B. T., Fyles, J. W., & Smith, D. L. (2012). Switchgrass establishment and seeding year production can be improved by inoculation with rhizosphere endophytes. Biomass and Bioenergy, 47, 295–301.

    Article  Google Scholar 

  • Khan, Z., Kim, S. G., Jeon, Y. H., Khan, H. U., Son, S. H., & Kim, Y. H. (2008). A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technology, 99, 3016–3023.

    Article  CAS  PubMed  Google Scholar 

  • Khan, N., Mishra, A., Chauhan, P. S., Sharma, Y. K., & Nautiyal, C. S. (2012a). Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie Van Leeuwenhoek, 101, 453–459.

    Article  CAS  PubMed  Google Scholar 

  • Khan, N., Mishra, A., & Nautiyal, C. S. (2012b). Paenibacillus lentimorbus B-304882r control early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62, 65–74.

    Article  Google Scholar 

  • Kim, B. C., Lee, K. H., Kim, M. N., Kim, E. M., Rhee, M. S., Kwon, O. Y., & Shin, K. S. (2009a). Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora. Journal of Microbiology, 47, 530–535.

    Article  CAS  Google Scholar 

  • Kim, B. C., Kim, M. N., Lee, K. H., Kwon, S. B., Bae, K. S., & Shin, K. S. (2009b). Paenibacillus filicis sp. nov., isolated from the rhizosphere of the fern. Journal of Microbiology, 47, 524–529.

    Article  CAS  Google Scholar 

  • Kim, B. C., Lee, K. H., Kim, M. N., Kim, E. M., Min, S. R., Kim, H. S., & Shin, K. S. (2009c). Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. Journal of Microbiology, 47, 699–704.

    Article  Google Scholar 

  • Kim, J. F., Jeong, H., Park, S. Y., Kim, S. B., Park, Y. K., Choi, S. K., Ryu, C. M., Hur, C. G., Ghim, S. Y., Oh, T. K., Kim, J. J., Park, C. S., & Park, S. H. (2010). Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681. Journal of Bacteriology, 192, 6103–6104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. M., Lee, S. H., Lee, S. H., Choi, E. J., & Jeon, C. O. (2013). Paenibacillus hordei sp. nov., isolated from naked barley in Korea. Antonie Van Leeuwenhoek, 103, 3–9.

    Article  PubMed  Google Scholar 

  • Kloepper, J., & Metting, F., Jr. (1992). Plant growth-promoting rhizobacteria as biological control agents. In Soil microbial ecology: Applications in agricultural and environmental management (pp. 255–274). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Ko, K. S., Kim, Y. S., Lee, M. Y., Shin, S. Y., Jung, D. S., Peck, K. R., & Song, J. H. (2008). Paenibacillus konsidensis sp. nov., isolated from a patient. International Journal of Systematic and Evolutionary Microbiology, 58, 2164–2168.

    Article  CAS  PubMed  Google Scholar 

  • Konz, D., Klens, A., Schorgendorfer, K., & Marahiel, M. A. (1997). The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: Molecular characterization of three multi-modular peptide synthetases. Chemistry & Biology, 4, 927–937.

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6, 1244–1251.

    Article  CAS  PubMed  Google Scholar 

  • Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: A minireview. Indian Journal of Microbiology, 49, 2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landman, D., Georgescu, C., Martin, D. A., & Quale, J. (2008). Polymyxins revisited. Clinical Microbiology Reviews, 21, 449–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapidot, D., Dror, R., Vered, E., Mishli, O., Levy, D., & Helman, Y. (2015). Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis. Plant Pathology, 64, 545–551.

    Article  Google Scholar 

  • Latif, S., Khan, S., Naveed, M., Mustafa, G., Bashir, T., & Mumtaz, A. S. (2013). The diversity of Rhizobia, Sinorhizobia and novel non-Rhizobial Paenibacillus nodulating wild herbaceous legumes. Archives of Microbiology, 195, 647–653.

    Article  CAS  PubMed  Google Scholar 

  • Lebuhn, M., Heulin, T., & Hartmann, A. (1997). Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiology Ecology, 22, 325–334.

    Article  CAS  Google Scholar 

  • Lee, Y. E., & Lim, P. O. (2004). Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. Journal of Microbiology and Biotechnology, 14, 1014–1021.

    CAS  Google Scholar 

  • Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., & Ryu, C.-M. (2012a). Induced resistance by a long-chain bacterial volatile: Elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE, 7, e48744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. H., Cho, Y. E., Park, S.-H., Balaraju, K., Park, J. W., Lee, S. W., & Park, K. (2012b). An antibiotic fusaricidin: A cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica, 41, 49–58.

    Article  CAS  Google Scholar 

  • Lee, H. W., Roh, S. W., Yim, K. J., Shin, N. R., Lee, J., Whon, T. W., Kim, J. Y., Hyun, D. W., Kim, D., & Bae, J. W. (2013a). Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. Journal of Microbiology, 51, 312–317.

    Article  CAS  Google Scholar 

  • Lee, S. E., Cho, Y. E., Park, S. H., Balaraju, K., Park, J. W., Lee, S. W., & Park, K. (2013b). An antibiotic fusaricidin: A cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica, 41, 49–58.

    Article  CAS  Google Scholar 

  • Lee, J. J., Yang, D. H., Ko, Y. S., Park, J. K., Im, E. Y., Kim, J. Y., Kwon, K. Y., Lee, Y. J., Kim, H. M., & Kim, M. K. (2014). Paenibacillus swuensis sp. nov., a bacterium isolated from soil. Journal of Microbiology, 52, 106–110.

    Article  CAS  Google Scholar 

  • Liu, W., Xu, X., Wu, X., Yang, Q., Luo, Y., & Christie, P. (2006). Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 28, 133–14.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., & Jensen, S. E. (2008). Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chemistry & Biology, 15, 118–127.

    Article  CAS  Google Scholar 

  • Li, B., Yu, R., Tang, Q., Su, T., Chen, X., Zhu, B., & Wang, Y. (2011). Biofilm formation ability of Paenibacillus polymyxa and Paenibacillus macerans and their inhibitory effect against tomato bacterial wilt. African Journal of Microbiology Research, 5, 4260–4266.

    Article  Google Scholar 

  • Ling, N., Xue, C., Huang, Q., Yang, X., Xu, Y., & Shen, Q. (2010). Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl, 55, 673–683.

    Article  Google Scholar 

  • Lu, J. J., Wang, J. F., & Hu, X. F. (2013). Genome sequence of growth-improving Paenibacillus mucilaginosus Strain KNP414. Genome Announcements, 24, 1. pii: e00881-13.

    Google Scholar 

  • Luo, Y., Wang, C., Allard, S., Strain, E., Allard, M. W., Brown, E. W., & Zheng, J. (2013). Draft genome sequences of Paenibacillus alvei A6-6i and TS-15. Genome Announcements, 29, 1. pii: e00673-13.

    Google Scholar 

  • Ling, N., Huang, Q., Guo, S., & Shen, Q. (2011). Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum. Plant and Soil, 341, 485–493.

    Article  CAS  Google Scholar 

  • Ma, Y., Zhang, J., & Chen, S. (2007a). Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans. International Journal of Systematic and Evolutionary Microbiology, 57, 873–877.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Xia, Z., Liu, X., & Chen, S. (2007b). Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. International Journal of Systematic and Evolutionary Microbiology, 57, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Ma, M., Wang, C., Ding, Y., Li, L., Shen, D., Jiang, X., Guan, D., Cao, F., Chen, H., Feng, R., Wang, X., Ge, Y., Yao, L., Bing, X., Yang, X., Li, J., & Du, B. (2011). Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting Rhizobacterium with broad-spectrum antimicrobial activity. Journal of Bacteriology, 193, 311–312.

    Article  CAS  PubMed  Google Scholar 

  • Ma, M., Wang, Z., Li, L., Jiang, X., Guan, D., Cao, F., Chen, H., Wang, X., Shen, D., Du, B., & Li, J. (2012). Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer. Journal of Bacteriology, 194, 2777–2778.

    Google Scholar 

  • McSpadden Gardener, B. B. (2004). Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology, 94, 1252–1258.

    Article  CAS  PubMed  Google Scholar 

  • Markowitz, V. M., Chen, I. M., Palaniappan, K., Chu, K., Szeto, E., Pillay, M., Ratner, A., Huang, J., Woyke, T., Huntemann, M., Anderson, I., Billis, K., Varghese, N., Mavromatis, K., Pati, A., Ivanova, N. N., & Kyrpides, N. C. (2014). IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Research, 42(Database issue), D560–D567.

    Article  CAS  PubMed  Google Scholar 

  • Mavingui, P., & Heulin, T. (1994). In vitro chitinase antifungal activity of soil, rhizosphere and rhizoplane populations of Bacillus polymyxa. Soil Biology and Biochemistry, 26, 801–803.

    Article  CAS  Google Scholar 

  • Mead, D. A., Lucas, S., Copeland, A., Lapidus, A., Cheng, J.-F., Bruce, D. C., Goodwin, L. A., Pitluck, S., et al. (2012). Complete genome sequence of Paenibacillus strain Y4.12MC10, a novel Paenibacillus lautus strain isolated from obsidian hot spring in Yellowstone national park. Standards in Genomic Sciences, 6, 381–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ming, H., Nie, G. X., Jiang, H. C., Yu, T. T., Zhou, E. M., Feng, H. G., Tang, S. K., & Li, W. J. (2012). Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie Van Leeuwenhoek, 102, 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Nasu, Y., Nosaka, Y., Otsuka, Y., Tsuruga, T., Nakajima, M., Watanabe, Y., & Jin, M. (2003). A case of Paenibacillus polymyxa bacteremia in a patient with cerebral infarction. Kansenshōgaku Zasshi, 77, 844–848 (in Japanese).

    Article  PubMed  Google Scholar 

  • Naing, K. W., Nguyen, X. H., Anees, M., Lee, Y. S., Kim, Y. C., Kim, S. J., Kim, M. H., Kim, Y. H., & Kim, K. Y. (2015). Biocontrol of Fusarium will disease in tomato by Paenibacillus ehimensis KWN38. World Journal of Microbiology and Biotechnology, 31, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, X. H., Naing, K. W., Lee, Y. S., Jung, W. J., Anees, M., & Kim, K. Y. (2013). Antagonistic potential of Paenibacillus elgii HOA73 against the root-knot nematode, Meloidogyne incognita. Nematology, 15, 991–1000.

    Article  CAS  Google Scholar 

  • Niu, B., Rueckert, C., Blom, J., Wang, Q., & Borriss, R. (2011). The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides. Journal of Bacteriology, 193, 5862–5863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, B., Vater, J., Rueckert, C., Blom, J., Lehmann, M., Ru, J.-J., Chen, X. H., Wang, Q., & Borriss, R. (2013). Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiology, 13, 137–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noskin, G. A., Suriano, T., Collins, S., Sesler, S., & Peterson, L. R. (2001). Clinical case study. Paenibacillus macerans pseudobacteremia resulting from contaminated blood culture bottles in a neonatal intensive care unit. American Journal of Infection Control, 29, 126–129.

    Google Scholar 

  • Ouyang, J., Pei, Z., Lutwick, L., Dalal, S., Yang, L., Cassai, M., Sandhu, K., Hanna, B., Wieczorek, R. L., Bluth, M., & Pincus, M. R. (2008). Case report: Paenibacillus thiaminolyticus: A new cause of human infection, inducing bacteremia in a patient on hemodialysis. Annals of Clinical and Laboratory Science, 38, 393–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya, M., Rajput, M., & Rajkumar, S. (2015). Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology, 84, 80–89.

    Article  CAS  Google Scholar 

  • Parte, A. C. (2014). LPSN – List of prokaryotic names with standing in nomenclature. Nucleic Acids Research, 42(Database issue), D613–D616.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, D. J., Srinivasan, M., & Chanway, C. P. (1996). Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiology Letters, 142, 271–276.

    Article  CAS  PubMed  Google Scholar 

  • Pettersson, B., Rippere, K. E., Yousten, A. A., & Priest, F. G. (1999). Transfer of Bacillus lentimorbus, and Bacillus popilllliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. International Journal of Systematic Bacteriology, 49, 531–540.

    Article  PubMed  Google Scholar 

  • Postma, J., Nijhuis, E. H., & Someus, E. (2010). Selection of phosphorous solubilizing bacteria with biocontrol potential for growth in phosphorous rich animal bone charcoal. Applied Soil Ecology, 46, 464–469.

    Article  Google Scholar 

  • Postma, J., Clematis, F., Nijhuis, E. H., & Someus, E. (2013). Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. radicis lycopersici in tomato. Biological Control, 67, 284–291.

    Article  CAS  Google Scholar 

  • Qiu, M., Zhang, R., Xue, C., Zhang, S., Li, S., Zhang, N., & Shen, Q. (2012). Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biology and Fertility of Soils, 48, 807–816.

    Article  CAS  Google Scholar 

  • Raza, W., Yang, W., & Shen, Q. R. (2008). Paenibacillus polymyxa: Antibiotics, hydrolytic enzymes and hazard assessment. Journal of Plant Pathology, 90, 403–414.

    Google Scholar 

  • Raza, W., Yang, X., Wu, H., Wang, Y., Xu, Y., & Shen, Q. (2009). Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. European Journal of Plant Pathology, 125, 471–483.

    Article  CAS  Google Scholar 

  • Raza, W., Hongsheng, W., & Qirong, S. (2010). Response of Paenibacillus polymyxa to iron: Alternations in cellular chemical composition and the production of fusaricidin type antimicrobial compounds. Brazilian Archives of Biology and Technology, 53, 1145–1154.

    Article  CAS  Google Scholar 

  • Reboli, A. C., Bryan, C. S., & Farrar, W. E. (1989). Bacteremia and infection of a hip prosthesis caused by Bacillus alvei. Journal of Clinical Microbiology, 27, 1395–1396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieg, S., Bauer, T. M., Peyerl-Hoffmann, G., Held, J., Ritter, W., Wagner, D., Kern, W. V., & Serr, A. (2010). Paenibacillus larvae bacteremia in injection drug users. Emerging Infectious Diseases, 16, 487–489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivas, R., Mateos, P. F., Martínez-Molina, E., & Velázquez, E. (2005a). Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. International Journal of Systematic and Evolutionary Microbiology, 55, 743–746.

    Article  CAS  PubMed  Google Scholar 

  • Rivas, R., Mateos, P. F., Martínez-Molina, E., & Velázquez, E. (2005b). Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. International Journal of Systematic and Evolutionary Microbiology, 55, 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Rivas, R., Garcia-Fraile, P., Mateos, P. F., Martinez-Molina, E., & Velazquez, E. (2007). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Letters in Applied Microbiology, 44, 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Díaz, M., Lebbe, L., Rodelas, B., Heyrman, J., De Vos, P., & Logan, N. A. (2005). Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 55, 2093–2099.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, A. C., Antunes, J. E. L., da Costa, A. F., do Vale Barreto Figueiredo, M., & Figueiredo, M. (2013). Interrelationship of Bradyrhizobium sp. and plant growth-promoting bacteria in cowpea: Survival and symbiotic performance. Journal of Microbiology, 51, 49–55.

    Article  CAS  Google Scholar 

  • Roux, V., & Raoult, D. (2004). Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. International Journal of Systematic and Evolutionary Microbiology, 54, 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  • Roux, V., Fenner, L., & Raoult, D. (2008). Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. International Journal of Systematic and Evolutionary Microbiology, 58, 682–687.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, C. M., & Park, C. S. (1997). Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681. In Proceedings of the fourth international workshop on plant growth-promoting Rhizobacteria, Japan-OECD joint workshop (Sapporo, Japan) pp. 209–211.

    Google Scholar 

  • Ryu, C. M., Hu, C. H., Locy, R. D., & Kloepper, J. W. (2005a). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268, 285–292.

    Article  CAS  Google Scholar 

  • Ryu, C. M., Kim, J., Cho, O., Park, S. Y., Park, S. H., & Park, C. S. (2005b). Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. Journal of Microbiology and Biotechnology, 15, 984–991.

    Google Scholar 

  • Ryu, C. M., Kim, J., Choi, O., Kim, S. H., & Park, C. S. (2006). Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control, 39, 282–289.

    Article  Google Scholar 

  • Satyanarayana, T. (2005). Microbial diversity. Current Science, 89, 926–928.

    Google Scholar 

  • Scheldeman, P., Goossens, K., Rodriguez-Diaz, M., Pil, A., Goris, J., Herman, L., De Vos, P., Logan, N. A., & Heyndrickx, M. (2004). Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. International Journal of Systematic and Evolutionary Microbiology, 54, 885–891.

    Article  CAS  PubMed  Google Scholar 

  • Shaheen, M., Li, J., Ross, A. C., Vederas, J. C., & Jensen, S. E. (2011). Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chemistry & Biology, 18, 1640–1648.

    Article  CAS  Google Scholar 

  • Shin, S. H., Kim, S., Kim, J. Y., Song, H. Y., Cho, S. J., Kim, D. R., Lee, K. I., Lim, H. K., Park, N. J., Hwang, I. T., & Yang, K. S. (2012). Genome sequence of Paenibacillus terrae HPL-003, a xylanase-producing bacterium isolated from soil found in forest residue. Journal of Bacteriology, 194, 1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirota-Madi, A., Olender, T., Helman, Y., Ingham, C., Brainis, I., Roth, D., Hagi, E., Brodsky, L., Leshkowitz, D., Galatenko, V., Nikolaev, V., Mugasimangalam, R. C., Bransburg-Zabary, S., Gutnick, D. L., Lancet, D., & Ben-Jacob, E. (2010). Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics, 11, 710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, H. Y., Lim, H. K., Kim, D. R., Lee, K. I., & Hwang, I. T. (2014). A new bi-modular endo-β-1,4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus terrae HPL-003. Enzyme and Microbial Technology, 54, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 44, 846–849.

    Article  CAS  Google Scholar 

  • Tatusova, T., Ciufo, S., Fedorov, B., O’Neill, K., & Tolstoy, I. (2014). RefSeq microbial genomes database: New representation and annotation strategy. Nucleic Acids Research, 42, D553–D559.

    Article  CAS  PubMed  Google Scholar 

  • Teng, J. L., Woo, P. C., Leung, K. W., Lau, S. K., Wong, M. K., & Yuen, K. Y. (2003). Pseudobacteraemia in a patient with neutropenic fever caused by a novel Paenibacillus species: Paenibacillus hongkongensis sp. nov. Molecular Pathology, 56, 29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, Y., Zhao, W., Qian, C., Li, O., Zhu, L., & Wu, X. (2012). Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiology, 12, 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk, S., Nicander, B., Granhall, U., & Tillberg, E. (1999). Cytokinin production by Paenibacillus polymyxa. Soil Biology and Biochemistry, 31, 1847–1852.

    Article  CAS  Google Scholar 

  • Timmusk, S., & Wagner, E. G. H. (1999). The plant-growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Molecular Plant-Microbe Interactions, 12, 951–959.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, S., Singh, S. N., & Garg, S. K. (2013). Induced phytoremediation of metals from fly ash mediated by plant growth promoting rhizobacteria. Journal of Environmental Biology, 34, 717–727.

    PubMed  Google Scholar 

  • Tjamos, E. C., Tsitsigiannis, D. I., Tjamos, S. E., Antoniou, P. P., & Katinakis, P. (2004). Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. European Journal of Plant Pathology, 110, 35–44.

    Article  CAS  Google Scholar 

  • Tjamos, S. E., Flemetakis, E., Paplomatas, E. J., & Katinakis, P. (2005). Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Molecular Plant Pathology, 18, 555–561.

    CAS  Google Scholar 

  • Tong, Y. J., Ji, X. J., Liu, L. G., Shen, M. Q., Huang, H. (2013) Genome sequence of Paenibacillus polymyxa ATCC 12321, a promising strain for optically active (R,R)-2,3-Butanediol production. Genome Announcements 1(4). pii: e00572-13.

    Google Scholar 

  • Turan, M., Gulluce, M., von Wirén, N., & Sahin, F. (2012). Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey. Journal of Plant Nutrition and Soil Science, 175, 818–826.

    Article  CAS  Google Scholar 

  • Ulrich, K., Stauber, T., & Ewald, D. (2008). Paenibacillus – A predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell, Tissue and Organ Culture, 93, 347–351.

    Article  Google Scholar 

  • Valverde, A., Peix, A., Rivas, R., Velazquez, E., Salazar, S., Santa-Regina, I., Rodriguez-Barrueco, C., & Igual, J. M. (2008). Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. International Journal of Systematic and Evolutionary Microbiology, 58, 2560–2564.

    Article  CAS  PubMed  Google Scholar 

  • Valverde, A., Fterich, A., Mahdhi, M., Ramirez–Bahena, M.-H., Caviedes, M. A., Mars, M., Velazquez, E., & Rodriguez-Llorente, I. D. (2010). Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. International Journal of Systematic and Evolutionary Microbiology, 60, 2182–2186.

    Article  CAS  PubMed  Google Scholar 

  • Velkov, T., Thompson, P. E., Nation, R. L., & Li, J. (2010). Structure-activity relationships of polymyxin antibiotics. Journal of Medicinal Chemistry, 53, 1898–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Houdt, R., Deghorain, M., Vermeersch, M., Provoost, A., Lo Giudice, A., Leys, N., Perez-Morga, D., Van Melderen, L., & Michaud, L. (2013). Characterization of culturable Paenibacillus spp. from the snow surface on the high Antarctic Plateau (DOME C) and their dissemination in the Concordia research station. Extremophiles, 17, 565–573.

    Article  PubMed  CAS  Google Scholar 

  • von der Weid, I., Duarte, G. F., van Elsas, J. D., & Seldin, L. (2002). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. International Journal of Systematic and Evolutionary Microbiology, 52, 2147–2153.

    PubMed  Google Scholar 

  • von der Weid, I., Alviano, D. S., Santos, A. L. S., Soares, R. M. A., Alviano, C. S., & Seldin, L. (2003). Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. Journal of Applied Microbiology, 95, 1143–11511.

    Article  PubMed  Google Scholar 

  • Wang, L. Y., Li, J., Li, Q. X., & Chen, S. F. (2013). Paenibacillus beijingensis sp. nov., a nitrogen-fixing species isolated from wheat rhizosphere soil. Antonie Van Leeuwenhoek, 104, 675–683.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. Y., Li, J., Li, Q. X., & Chen, S. F. (2014). Erratum to: Paenibacillus beijingensis sp. nov., a nitrogen-fixing species isolated from wheat rhizosphere soil. Antonie Van Leeuwenhoek, 105, 437.

    Article  Google Scholar 

  • Wei, G., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology, 86, 221–224.

    Article  Google Scholar 

  • Whitworth, D. E., & Cock, P. J. (2008). Two-component systems of the myxobacteria: Structure, diversity and evolutionary relationships. Microbiology, 154, 360–372.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. F., Wu, Q. L., & Liu, S. J. (2013). Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 63, 3652–3658.

    Article  CAS  PubMed  Google Scholar 

  • Xie, C. H., & Yokota, A. (2007). Paenibacillus terrigena sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 57, 70–72.

    Article  CAS  PubMed  Google Scholar 

  • Xie, J. B., Bai, L. Q., Wang, L. Y., & Chen, S. F. (2012a). Phylogeny of 16S rRNA and nifH genes and regulation of nitrogenase activity by oxygen and ammonium in the genus Paenibacillus. Mikrobiologiia, 81, 760–767.

    CAS  PubMed  Google Scholar 

  • Xie, J. B., Zhang, L. H., Zhou, Y. G., Liu, H. C., & Chen, S. F. (2012b). Paenibacillus taohuashanense sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of the root of Caragana kansuensis Pojark. Antonie Van Leeuwenhoek, 102, 735–741.

    Article  CAS  PubMed  Google Scholar 

  • Xie, J. B., Du, Z., Bai, L., Tian, C., Zhang, Y., Xie, J. Y., Wang, T., Liu, X., Chen, X., Cheng, Q., Chen, S., & Li, J. (2014). Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: Organization, evolution and expression of the nitrogen fixation genes. PLoS Genetics, 10, e1004231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, K. Y., Blee, K. A., Zang, S., & Anderson, A. J. (2004). Oxycom™ treatment suppresses Pseudomonas syringae infection and activates a mitogen-activated protein kinase pathway in tobacco. Physiological and Molecular Plant Pathology, 61, 249–256.

    Article  Google Scholar 

  • Yoon, G. Y., Lee, Y. S., Lee, S. Y., Park, R. D., Hyun, H. N., Nam, Y., & Kim, K. Y. (2012). Effects on Meloidogyne incognita of chitinase glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology, 14, 175–184.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Z. T., Yu, H. M., & Ma, Y. (2013). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. International Journal of Systematic and Evolutionary Microbiology, 63, 1776–1781.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H., Du, B. H., & Ding, Y. Q. (2008). Screening and study on biological characteristics of antagonistic bacteria against Fusarium solani. Journal of Biotechnology Bulletin, 1, 156–159 (In Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Tabacchioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Lal, S., Chiarini, L., Tabacchioni, S. (2016). New Insights in Plant-Associated Paenibacillus Species: Biocontrol and Plant Growth-Promoting Activity. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_11

Download citation

Publish with us

Policies and ethics