Skip to main content

Applications of Physiologically Based Pharmacokinetic (PBPK) Models for Pediatric Populations

  • Chapter
  • First Online:

Abstract

Given the difficulties for conducting clinical studies in infants and children, pediatric pharmacometrics, which applies quantitative models to account maturation of biochemical and physiological aspects of development, to predict efficacy and the likelihood of adverse reactions, is being extensively applied during pediatric drug development. More specifically, pharmacokinetics, pharmacodynamics, and disease are evaluated in different subpopulations using different methodologies. Both the European Medicines Agency (EMA) and the FDA’s pharmacometrics initiative have influenced pediatric clinical design [41, 45]. Many pediatric pharmacometric examples are for drugs already on the market but used off-label in children to address the concerns on age-appropriate dose, efficacy, and safety in this special population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A (2014) Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Dispos 42(9):1478–1484

    Article  PubMed  Google Scholar 

  2. Allegaert K, Smits A, van den Anker JN (2012) Physiologically based pharmacokinetic modeling in pediatric drug development: a clinician’s request for a more integrated approach. J Biomed Biotechnol 2012:103763

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332

    Article  CAS  PubMed  Google Scholar 

  4. Barrett JS, Della Casa Alberighi O, Laer S, Meibohm B (2012) Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther 92(1):40–49

    Article  CAS  PubMed  Google Scholar 

  5. Bjorkman S (2005) Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol 59(6):691–704

    Article  PubMed  PubMed Central  Google Scholar 

  6. Blesch KS, Gieschke R, Tsukamoto Y, Reigner BG, Burger HU, Steimer JL (2003) Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: the capecitabine experience. Invest New Drugs 21(2):195–223

    Article  CAS  PubMed  Google Scholar 

  7. Brion L, Fleischman AR, Schwartz GJ (1985) Evaluation of four length-weight formulas for estimating body surface area in newborn infants. J Pediatr 107(5):801–803

    Article  CAS  PubMed  Google Scholar 

  8. Brion LP, Fleischman AR, McCarton C, Schwartz GJ (1986) A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr 109(4):698–707

    Article  CAS  PubMed  Google Scholar 

  9. Burghaus R, Coboeken K, Gaub T, Kuepfer L, Sensse A, Siegmund HU, Weiss W, Mueck W, Lippert J (2011) Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation. PLoS One 6(4):e17626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen HL, Liu YJ, Chen HL, Wu SH, Ni YH, Ho MC, Lai HS, Hsu WM, Hsu HY, Tseng HC, Jeng YM, Chang MH (2008) Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia. Pediatr Res 63(6):667–673

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Jin JY, Mukadam S, Malhi V, Kenny JR (2012) Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies. Biopharm Drug Dispos 33(2):85–98

    Article  PubMed  Google Scholar 

  12. Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, Willmann S (2015) Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des 21(39):5688–5698

    Article  CAS  PubMed  Google Scholar 

  13. Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci 29(4):186–191

    Article  CAS  PubMed  Google Scholar 

  14. de Wildt SN, Johnson T, Choonara I (2003) The effects of age on drug metabolism. Paediatr Perinatal Drug Ther 5(3):101–106

    Article  Google Scholar 

  15. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 37(6):485–505

    Article  PubMed  Google Scholar 

  16. Du Bois D, Bois EFD (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5(5):303–311; discussion 312–303

    PubMed  Google Scholar 

  17. Edginton AN (2011) Knowledge-driven approaches for the guidance of first-in-children dosing. Paediatr Anaesth 21(3):206–213

    Article  PubMed  Google Scholar 

  18. Edginton AN, Schmitt W, Willmann S (2006) Application of physiology-based pharmacokinetic and pharmacodynamic modeling to individualized target-controlled propofol infusions. Adv Ther 23(1):143–158

    Article  CAS  PubMed  Google Scholar 

  19. Emoto C, Fukuda T, Johnson TN, Adams DM, Vinks AA (2015) Development of a Pediatric Physiologically Based Pharmacokinetic Model for Sirolimus: Applying Principles of Growth and Maturation in Neonates and Infants. CPT Pharmacometrics Syst Pharmacol 4(2):e17

    Google Scholar 

  20. Emoto C, Fukuda T, Venkatasubramanian R, Vinks AA (2015) The impact of CYP3A5*3 polymorphism on sirolimus pharmacokinetics: insights from predictions with a physiologically-based pharmacokinetic model. Br J Clin Pharmacol 80(6):1438–1446

    Article  CAS  PubMed  Google Scholar 

  21. Galetin A (2014) Rationalizing underprediction of drug clearance from enzyme and transporter kinetic data: from in vitro tools to mechanistic modeling. Methods Mol Biol 1113:255–288

    Article  CAS  PubMed  Google Scholar 

  22. Ginsberg G, Hattis D, Russ A, Sonawane B (2004) Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J Toxicol Environ Health A 67(4):297–329

    Article  CAS  PubMed  Google Scholar 

  23. Haddad S, Restieri C, Krishnan K (2001) Characterization of age-related changes in body weight and organ weights from birth to adolescence in humans. J Toxicol Environ Health A 23;64(6):453-64

    Google Scholar 

  24. Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93(1):62–66

    Google Scholar 

  25. Hsien L (2010) Identifying padeiatric needs in cardiology and the prediction of sildenafil exposure in children with pulmonary arterial hypertension. Inauguraldissertation, University of Dusseldorf

    Google Scholar 

  26. Huang SM (2012) PBPK as a tool in regulatory review. Biopharm Drug Dispos 33(2):51–52

    Article  CAS  PubMed  Google Scholar 

  27. Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I (2013) The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci 102(9):2912–2923

    Article  CAS  PubMed  Google Scholar 

  28. International Commission on Radiological Protection (1975) Report of the task group on reference man: anatomical, physilogical and metabolic characteristics. Pergamon Press, Oxford

    Google Scholar 

  29. Ince I, Knibbe CA, Danhof M, de Wildt SN (2013) Developmental changes in the expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo investigations. Clin Pharmacokinet 52(5):333–345

    Article  CAS  PubMed  Google Scholar 

  30. International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    Article  Google Scholar 

  31. Jamei M, Dickinson GL, Rostami-Hodjegan A (2009) A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet 24(1):53–75

    Article  CAS  PubMed  Google Scholar 

  32. Johnson TN, Rostami-Hodjegan A, Tucker GT (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45(9):931–956

    Article  CAS  PubMed  Google Scholar 

  33. Johnson TN, Tanner MS, Taylor CJ, Tucker GT (2001) Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol 51(5):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A (2005) Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl 11(12):1481–1493

    Article  PubMed  Google Scholar 

  35. Johnsrud EK, Koukouritaki SB, Divakaran K, Brunengraber LL, Hines RN, McCarver DG (2003) Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther 307(1):402–407

    Article  CAS  PubMed  Google Scholar 

  36. Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, Snoeys J, Upreti VV, Zheng M, Hall SD (2015) Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther 97(3):247–262

    Article  CAS  PubMed  Google Scholar 

  37. Kaye JL (2011) Review of paediatric gastrointestinal physiology data relevant to oral drug delivery. Int J Clin Pharm 33(1):20–24

    Article  PubMed  Google Scholar 

  38. Kersting G, Willmann S, Wurthwein G, Lippert J, Boos J, Hempel G (2012) Physiologically based pharmacokinetic modelling of high- and low-dose etoposide: from adults to children. Cancer Chemother Pharmacol 69(2):397–405

    Article  CAS  PubMed  Google Scholar 

  39. Khalil F, Laer S (2011) Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol 2011:907461

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, Hines RN (2004) Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 308(3):965–974

    Article  CAS  PubMed  Google Scholar 

  41. Kuhnz W, Nau H (1983) Differences in in vitro binding of diazepam and N-desmethyldiazepam to maternal and fetal plasma proteins at birth: relation to free fatty acid concentration and other parameters. Clin Pharmacol Ther 34(2):220–226

    Article  CAS  PubMed  Google Scholar 

  42. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T (1997) Expression of CYP3A in the human liver – evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 247(2):625–634

    Article  CAS  PubMed  Google Scholar 

  43. Laer S, Barrett JS, Meibohm B (2009) The in silico child: using simulation to guide pediatric drug development and manage pediatric pharmacotherapy. J Clin Pharmacol 49(8):889–904

    Article  CAS  PubMed  Google Scholar 

  44. Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, Burckart GJ (2012) Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther 91(5):926–931

    Article  CAS  PubMed  Google Scholar 

  45. Maharaj AR, Edginton AN (2014) Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst Pharmacol 3:e150

    Article  CAS  PubMed  Google Scholar 

  46. Mahmood I (2015) Prediction of glucuronidated drug clearance in pediatrics (</=5 years): An allometric approach. Eur J Drug Metab Pharmacokinet 40(1):53–59

    Article  CAS  PubMed  Google Scholar 

  47. Manolis E, Pons G (2009) Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br J Clin Pharmacol 68(4):493–501

    Article  PubMed  PubMed Central  Google Scholar 

  48. McLanahan ED, El-Masri HA, Sweeney LM, Kopylev LY, Clewell HJ, Wambaugh JF, Schlosser PM (2012) Physiologically based pharmacokinetic model use in risk assessment – why being published is not enough. Toxicol Sci 126(1):5–15

    Article  CAS  PubMed  Google Scholar 

  49. McNamara PJ, Alcorn J (2002) Protein binding predictions in infants. AAPS PharmSci 4(1):E4

    Article  PubMed  Google Scholar 

  50. Mooij MG, de Koning BA, Huijsman ML, de Wildt SN (2012) Ontogeny of oral drug absorption processes in children. Expert Opin Drug Metab Toxicol 8(10):1293–1303

    Article  CAS  PubMed  Google Scholar 

  51. Nau H, Luck W, Kuhnz W, Wegener S (1983) Serum protein binding of diazepam, desmethyldiazepam, furosemide, indomethacin, warfarin, and phenobarbital in human fetus, mother, and newborn infant. Pediatr Pharmacol (New York) 3(3–4):219–227

    CAS  Google Scholar 

  52. Nong A, McCarver DG, Hines RN, Krishnan K (2006) Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: a case study with toluene. Toxicol Appl Pharmacol 214(1):78–87

    Article  CAS  PubMed  Google Scholar 

  53. Ogungbenro K, Aarons L, CRESim & Epi-CRESim Project Groups (2014) A physiologically based pharmacokinetic model for Valproic acid in adults and children. Eur J Pharm Sci 63:45–52

    Article  CAS  PubMed  Google Scholar 

  54. Ogungbenro K, Aarons L, CRESim & Epi-CRESim Project Groups (2015) A physiologically based pharmacokinetic model for clobazam and stiripentol in adults and children. Pharm Res 32(1):144–157

    Article  CAS  PubMed  Google Scholar 

  55. Pang KS, Durk MR (2010) Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion. J Pharmacokinet Pharmacodyn 37(6):591–615

    Article  CAS  PubMed  Google Scholar 

  56. Pelekis M, Gephart LA, Lerman SE (2001) Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds. Regul Toxicol Pharmacol 33(1):12–20

    Article  CAS  PubMed  Google Scholar 

  57. Peters SA (2008) Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin Pharmacokinet 47(4):245–259

    Article  CAS  PubMed  Google Scholar 

  58. Peters SA. (2012) Physiologically-based pharmacokinetic (PBPK) modelling and simulations: principles, methods, and applications in the pharmaceutcial industry. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  59. Pierrat A, Gravier E, Saunders C, Caira MV, Ait-Djafer Z, Legras B, Mallie JP (2003) Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz, and modification of diet in renal disease formulas. Kidney Int 64(4):1425–1436.

    Google Scholar 

  60. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, et al. (2003) Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit Rev Toxicol. 33(5):469–503

    Google Scholar 

  61. Rasool MF, Khalil F, Laer S (2015) A physiologically based pharmacokinetic drug-disease model to predict carvedilol exposure in adult and paediatric heart failure patients by incorporating pathophysiological changes in hepatic and renal blood flows. Clin Pharmacokinet 54(9):943–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NH (2009) Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 24(1):67–76

    Article  PubMed  Google Scholar 

  63. Rodieux F, Wilbaux M, van den Anker JN, Pfister M (2015) Effect of kidney function on drug kinetics and dosing in neonates, infants, and children. Clin Pharmacokinet 54(12):1183–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    Article  CAS  PubMed  Google Scholar 

  65. Rubin MI, Bruck E, Rapoport M (1949) Maturation of renal function in childhood; clearance studies. J Clin Invest 28(5 Pt 2):1144–1162

    Article  CAS  PubMed Central  Google Scholar 

  66. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N (2015) Physiologically Based Pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos 43(11):1823–1837

    Article  CAS  PubMed  Google Scholar 

  67. Samant TS, Mangal N, Lukacova V, Schmidt S (2015) Quantitative clinical pharmacology for size and age scaling in pediatric drug development: a systematic review. J Clin Pharmacol 55(11):1207–1217.

    Google Scholar 

  68. Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104(6):849–854

    Article  CAS  PubMed  Google Scholar 

  69. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58(2):259–263.

    Google Scholar 

  70. Shepard T, Scott G, Cole S, Nordmark A, Bouzom F (2015) Physiologically based models in regulatory submissions: output from the ABPI/MHRA forum on physiologically based modeling and simulation. CPT Pharmacometrics Syst Pharmacol 4(4):221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sinha VK, Snoeys J, Osselaer NV, Peer AV, Mackie C, Heald D (2012) From preclinical to human – prediction of oral absorption and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach in an industrial setting: a workflow by using case example. Biopharm Drug Dispos 33(2):111–121

    Article  CAS  PubMed  Google Scholar 

  72. Smits A, Annaert P, Allegaert K (2013) Drug disposition and clinical practice in neonates: cross talk between developmental physiology and pharmacology. Int J Pharm 452(1–2):8–13

    Article  CAS  PubMed  Google Scholar 

  73. Sonnier M, Cresteil T (1998) Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 251(3):893–898

    Article  CAS  PubMed  Google Scholar 

  74. Stader F, Wuerthwein G, Groll AH, Vehreschild JJ, Cornely OA, Hempel G (2015) Physiology-based pharmacokinetics of caspofungin for adults and paediatrics. Pharm Res 32(6):2029–2037

    Article  CAS  PubMed  Google Scholar 

  75. Stephenson T (2005) How children’s responses to drugs differ from adults. Br J Clin Pharmacol 59(6):670–673

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ (2003) Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 307(2):573–582

    Article  CAS  PubMed  Google Scholar 

  77. Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, Takashima S, Imaoka S, Funae Y, Yabusaki Y, Kamataki T, Kobayashi S (1997) A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 61(26):2567–2574

    Article  CAS  PubMed  Google Scholar 

  78. Thai HT, Mazuir F, Cartot-Cotton S, Veyrat-Follet C (2015) Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol 80(3):534–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Treluyer JM, Bowers G, Cazali N, Sonnier M, Rey E, Pons G, Cresteil T (2003) Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos 31(3):275–281

    Article  CAS  PubMed  Google Scholar 

  80. Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T (1997) Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 7(6):441–452

    Article  CAS  PubMed  Google Scholar 

  81. Treluyer JM, Jacqz-Aigrain E, Alvarez F, Cresteil T (1991) Expression of CYP2D6 in developing human liver. Eur J Biochem 202(2):583–588

    Article  CAS  PubMed  Google Scholar 

  82. Tsamandouras N, Rostami-Hodjegan A, Aarons L (2015) Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 79(1):48–55

    Article  CAS  PubMed  Google Scholar 

  83. Veering BT, Burm AG, Souverijn JH, Serree JM, Spierdijk J (1990) The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br J Clin Pharmacol 29(2):201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vieira I, Sonnier M, Cresteil T (1996) Developmental expression of CYP2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur J Biochem 238(2):476–483

    Article  CAS  PubMed  Google Scholar 

  85. Vogt W (2014) Evaluation and optimisation of current milrinone prescribing for the treatment and prevention of low cardiac output syndrome in paediatric patients after open heart surgery using a physiology-based pharmacokinetic drug-disease model. Clin Pharmacokinet 53(1):51–72

    Article  CAS  PubMed  Google Scholar 

  86. Wagner C, Thelen K, Willmann S, Selen A, Dressman JB (2013) Utilizing in vitro and PBPK tools to link ADME characteristics to plasma profiles: case example nifedipine immediate release formulation. J Pharm Sci 102(9):3205–3219

    Article  CAS  PubMed  Google Scholar 

  87. Wallace S (1976) Factors affecting drug-protein binding in the plasma of newborn infants. Br J Clin Pharmacol 3(3):510–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang F, Tong X, McCarver DG, Hines RN, Beard DA (2006) Population-based analysis of methadone distribution and metabolism using an age-dependent physiologically based pharmacokinetic model. J Pharmacokinet Pharmacodyn 33(4):485–518

    Article  CAS  PubMed  Google Scholar 

  89. Yu G, Zheng QS, Li GF (2014) Similarities and differences in gastrointestinal physiology between neonates and adults: a physiologically based pharmacokinetic modeling perspective. AAPS J 16(6):1162–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zane NR, Thakker DR (2014) A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet 53(12):1171–1182

    Article  CAS  PubMed  Google Scholar 

  91. Zhao P, Rowland M, Huang SM (2012) Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clin Pharmacol Ther 92(1):17–20

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

The opinions in this paper do not necessarily reflect the official views of the FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duan, P., Fisher, J.W., Wang, J. (2016). Applications of Physiologically Based Pharmacokinetic (PBPK) Models for Pediatric Populations. In: Mahmood, I., Burckart, G. (eds) Fundamentals of Pediatric Drug Dosing. Adis, Cham. https://doi.org/10.1007/978-3-319-43754-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43754-5_8

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-43752-1

  • Online ISBN: 978-3-319-43754-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics